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Abstract 
Borazine (B3N3H6) is known as ‘inorganic benzene’ because of a planar B3N3 ring with equivalent B-N 
distance. The lone pair from N in the ring delocalize to the adjacent p-orbital of B which leads to a 
conjugated system. Even though metal-benzene complexes have been studied extensively as models for 
cation- π interactions and organometallic bonding, similar systems with borazine is relatively scarce. Here, 
we present a density functional study on metal cation-borazine complexes focusing on geometric and 
electronic structures and their effects on infrared spectra. We have chosen Al, V, Mn, and Zn cations with 
various d-configurations which provide models for study donor-acceptor complexes. Among these four 
metal complexes, Al+ and Mn+ prefer to bind to π-cloud on top of the borazine ring. On the other hand, V+ 
and Zn+ bind to B and N, respectively. Infrared spectra of these complexes show four major bands: N-H-, 
B-H stretches and B-N-B ring and scissoring modes. Interactions of Al and Mn barely shift these band 
positions in the respective complexes as compared to those in isolated borazine, because of less cation-π 
interactions. On the other hand, V+ and Zn+ significantly perturb the borazine ring resulting shifts in 
infrared bands in these systems. 
 
Keywords: density functional theory, infrared spectroscopy, metal-ligand complexes

Introduction 

Understanding the structure and bonding of 
metal-benzene complexes is the key to answer 
some fundamental questions in organometallic 
chemistry. 1 These systems have been synthesized 
by laser vaporization techniques and studied via 
infrared spectroscopy.2-11 Quantum chemical 
calculations have also been extensively employed 
to these species which provided geometric and 
electronic structural information. 12-15 On the 
other hand, similar complexes of metals with 
borazine have been relatively unexplored. 
Borazine (B3N3H6), also known as 'inorganic 
benzene', is isoelectronic with benzene and 
consists of a planar B3N3 ring with equivalent B-N 
distance (see Figure 1).  The resonance structure 
of borazine is sketched in Scheme 1 which shows 
that the lone pair from N can delocalize to the 
adjacent empty p-orbital on B, making a 
conjugated system. The aromaticity of borazine is 
less than that of benzene as computed by 
aromatic stabilization energy (ASE). While ASE of 
benzene is found to be 92.5-150.6 kJmol-1, the 

same value for borazine is 41.8-46.4 kJmol-1.16 
Even though aromaticity of borazine is less than 
that of benzene, presence of an electron rich N 
and a deficient B atom in the ring can potentially 
form donor-acceptor complexes with suitable 
species.16 Transition metals with various d-
electron configurations are ideal candidates for 
these complexes, and can provide useful 
structure-bonding information. 
Main group metal (Li and Ca)-borzaine complexes 
have been studied by Kang using density 
functional theory, where he compared the metal 
complexes of benzene and borazine. 17 The study 
focused on the effect of differences in aromaticity 
of benzene and borazine on these systems. In 
addition, the author has also discussed the role of 
empty d-orbitals. Guo and coworker have studied 
3d transition metal doped borazine systems 
focusing on hydrogen storage properties, and 
found that titanium is the optimum dopant.18 In 
the present work, we present a density functional 
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study of metal cation-borazine complexes.

 
Scheme 1. Resonance structures of borazine. 

Computational Methodology 

M+-borazine (M+ = Al, V, Mn, Zn) complexes were 
studied using density functional theory (DFT).19 
The structures and vibrational frequencies were 
computed using Becke, Lee-Yang-Parr (B3LYP)20 
exchange correlation functional and 6-311+G (d, 
p) basis set.  Vibrational frequencies are scaled by 
a factor of 0.9613 as recommended for this 
functional and basis set. 21 Bands in 
computational spectra are given 10 cm-1 fwhm 
Lorentzian line shape. Due to the open d-shell 
structure, transition metal systems have many 
spin-multiplet structures within a narrow energy 
range. Although the density functional theory can 
yield the lowest-energy state in each particular 
symmetry (spatial and spin) channel, the 
calculations will tend to favor systems with 
highest spin multiplicities. Therefore, higher level 
theories electronic wave functions are treated as 
multistate determinates would be necessary to 

validate the accuracy of DFT. However, such 
methods (e.g., MCSCF, CASSCF, etc.) are 
computationally intensive. Bauschlicher and 
Maitre used the infinite order coupled cluster 
method with all singles and doubles and 
noniterative inclusion of triple excitations 
(CCSD(T)) for transition metal-oxide complexes.22 
The density functional results agree very well with 
CCSD(T) results as pointed out by Blanco and 
coworkers.23 Metal-borazine complexes have not 
been studied as extensively as metal-benzenes. 
Therefore, here, we used a computationally 
cheaper method which would give us relatively 
reliable results. 

 
Results and Discussion 

Figure 1 depicts the structure of borazine showing 
B-N, B-H, N-H bond lengths, and N-B-N, B-N-B 
bond angles. Borazine has a planar structure with 
equivalent B-N bond length (1.431 Å).  B-H and N-
H bond lengths are computed to be 1.192 and 
1.009 Å, respectively. Because of the lone pair on 
nitrogen, the B-N-B angle is 5o wider than the N-
B-N angle.  There are various metal binding sites 
on borazine, e.g., cation can attach either on top 
of the π-cloud, on top of either B or N, on B-H or 
N-H making metal-H sigma bonds. For each metal, 
initial geometries were started from these 
locations and optimized without any constraints. 

 
Figure 1. Computed structure of borazine with bond lengths and angles.  Bond lengths are in angstroms, 
angles are in degrees.   

Figure 2 shows the structures of various metal 
cation-borazine complexes. For each metal, 
optimized geometries show only one stable 

structure even though different initial geometries 
were considered.  Al+ and Mn+-borazine 
complexes show cation-π structures where 
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cations attach on top of the π -cloud. The lengths 
between the borazine π –cloud with Al and Mn 
are computed to be 2.333 and 2.209 Å.  V+ and Zn+ 
prefer to bind on top of B and N, respectively. In 
the cases of Al+ and Mn+-borazine complexes, the 
B3N3 planar structure remains almost intact. The 
B-N bond distance slightly reduced from 1.441 in 

isolated borazine to 1.431 Å in the respective 
complexes. The N-H and B-H bond lengths are also 
slightly different than those of isolated borazine 
(NH/BH bond lengths in these complexes are 
~1.009/1.182 Å as compared to ~1.014/1.192 Å in 
borazine). The B3N3 structures are slightly 
puckered in V+ and 

 
Figure 2. Structures of M+-Borazine complexes showing bond lengths and angles. Bond lengths are in 
angstroms, angles are in degrees. 

Zn+-borazine complexes due to interactions of 
metal ions with B and N, respectively. For V+-Bz, B 
attached to V+ is 15o out of the plane; and this 
deviation for N in Zn+-Bz is 8o.  The N-B-N angle is 
reduced to 111o in V+-Bz from that of isolated 
borazine (117o).  The B-N-B bond angle in Zn+-Bz is 
also slightly smaller (120o) than that of isolated 
borazine (123o). 
In order to discuss the structural parameters in 
terms of electron distributions within a complex, 
the molecular orbitals (HOMOs and LUMOs) of 
Al+-, V+-, and Zn+-borazine complexes are shown 
in Figure 3.  The d-orbital electronic configuration 
in transition metals significantly influence the 
binding preferences. The electronic configuration 

of isolated Al+ is [Ne]3s2 with 1S0 state. The HOMO 
of Al+-borazine (left inset in the upper trace of 
Figure 3) shows the interaction between the Al 
cation with the π-cloud. On the other hand, LUMO 
shows the delocalization of the s-electron in to 
the empty B-based p-orbitals.  The isolated V 
cation has a configuration of [Ar]3d4 with a 5D0 
state. As shown, the HOMO and LUMO of V+-
borazine (middle trace) show interactions 
between metal based d-orbital to B-based p-
orbitals. Since Mn+ has a half-filled [Ar]3d5 

configuration, the dπ-pπ interactions significantly 
reduced and MOs (not shown in Figure) resemble 
to those of Al+-borazine. Zn+ has a closed shell 
[Ar]3d10 configuration, but instead of a cation-π 
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interaction, it prefers to bind to N because of 
favorable 

dπ-pπ interactions. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 N-H stretch B-H stretch Ring modes 
 

Scissor 

Borazine 3490 2512 1340/1424 898 
Al+-Borazine 3440 2594 1404/1312 923 
V+-Borazine 3454/3433 2596 1403/1362/1285 929 
Mn+-Borazine 3435 2599 1400/1301 923 
Zn+-Borazine 3453/3369 2579 1447/1373/1321 942 

 
Table 2. Vibrational frequencies of borazine and M+-Borazine complexes computed at B3LYP/6-311+G (d, 
p) level. Harmonic frequencies are in cm-1 and scaled by a factor of 0.9613. 

The binding energies of M+-borazine complexes 
are shown in Table 1.  As explained in the above 
paragraph, both Al and Mn has only electrostatic 
interactions and therefore binding energies are 
much less than the other transition metals. V+-
borazine apparently has the highest binding 
energy due to more favorable interaction 
followed by Zn+-borazine. 
Figure 4 depicts vibrational spectra of the isolated 
gas phase borazine, along with those of M+-
borazine complexes. The infrared spectrum of 
borazine consists of four main  bands. B-H and N-
H stretches are computed at 2512 and 3490 cm-1, 
respectively. The symmetric and asymmetric B-N-
B ring modes are predicted at 1340 and 1424 cm-

1.  The in and out of plane scissoring modes are 
computed at around 900 cm-1. These four main 
bands are effected by the metal ion interactions. 
The band positions for borazine and M+-borazine 
complexes are listed in Table 2.  While N-H 

stretches are red-shifted, B-H stretches are 
predicted to appear at slightly higher frequencies 
for M+-borazine complexes. For Al+- and Mn+-
borazine complexes, all B-H and N-H stretches are 
equivalent and observed as single peaks. For V+-
borazine, N-H stretches show a doublet band 
structure.  Because of the back bonding from the 
two N closer to V, N-H bonds are weaker than the 
other N-H bond farther from the metal. As a 
result, two different N-H stretches are predicted. 
The doublet structure in the N-H stretch region is 
more pronounced in Zn+-borazine, where Zn+ 
directly binds to N. B-H stretches are shifted to 
higher frequencies because the interaction 
between B and the metal cation induces a partial 
positive charge on B making B-H bonds stronger.   
In the far infrared region, the B-N-B ring modes 
for π-systems (Al+ and Mn+-borazine) shows a 
doublet  feature. On the other hand, due to a 
greater interaction between M+ to B and N (for V+ 

 Energy Binding 
Energy 

Borazine -242.7485114 0 
Al+-Borazine -484.9479223 21.3 
V+-Borazine -1186.4634797 39.5 
Mn+-orazine -1393.479271 24.8 
Zn+-Borazine -2021.8088744 33.5 

 

Table 1. Energies (in Hartrees) and binding energies (kcal/mol) of M+-
Borazine complexes.  
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and Zn+) B-N-B ring modes turn on showing triplet 
features in the 1300-1400 cm-1 region. 

 
 

 
 
Figure 3. Highest occupied molecular orbital 
(HOMO) (left) and lowest unoccupied molecular  
orbital (LUMO) (right) of Al+-Borazine (upper 
trace), V+-Borazine (middle trace), and Zn+-
Borazine (lower trace). 

Conclusions 

We have studied metal-cation-borazine 
complexes using density functional theory and 6-
311+ G (d, p) basis set.  A group III metal (Al) with 
in empty d-orbital, and three transition metals (V, 
Mn, Zn) with different d-electron configuration 
are chosen to gain an insight into structure and 
bonding. Al+ and Mn+ show a cation-π structure 
with reduced electron donation from the cation. 
This makes sense because of low electron density 
on Al, and a half-filled d5 configuration of Mn+. A 
partially filled d-orbital in V+ can undergo dπ-pπ 
interactions with one of the B atoms in the 
borazine ring, and therefore V+ prefers to bind to 
B in the V+-borazine complex. The electrostatic 
interaction between the Zn cation and the lone 
pair of N is prominent in Zn+-borazine. The 
structure also shows an increased interaction 
between B-based p-orbital and Zn-based d-
orbitals. The infrared spectrum of borazine 

consists of N-H, B-H stretches and B-N-B ring 
nodes. These bands remain almost unchanged in 
Al+ and Mn+-borazine. For V+-borazine, a doublet 
pattern of N-H stretch is predicted for two kinds 
of stretches: one closer to metal and the other 
farther from it.  Since Zn+ directly binds to N, 
these stretches are further apart in the Zn+-
borazine complex. 

 
Figure 4. Infrared spectra of borazine and M+-
Borazine complexes. The structures are shown in 
insets. 
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