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Abstract 
This review will focus on strategies to develop new treatments that target the biofilm mode of growth 
and that can be used to treat biofilm infections. These approaches aim to reduce or inhibit biofilm 
formation, or to increase biofilm dispersion. Many antibiofilm compounds are not bactericidal but 
render the cells in a planktonic growth state, which are more susceptible to antibiotics and more easily 
cleared by the immune system. Novel compounds are being developed with antibiofilm activity that 
includes antimicrobial peptides, natural products, small molecules and polymers. Bacteriophages are 
being considered for use in treating biofilms, as well as the use of enzymes that degrade the 
extracellular matrix polymers to dissolve biofilms. There is great potential in these new approaches for 
use in treating chronic biofilm infections.  
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Introduction 

Biofilms are aggregates of bacteria growing 
together in a community surrounded by a 
protective and adhesive extracellular matrix 
(ECM) of exopolysaccharides (EPS), extracellular 
DNA (eDNA) and proteins (1-3). The formation of 
a biofilm involves the following stages: 
attachment to a surface, formation of 
microcolonies, maturation and dispersal (4). 
Biofilms are a successful long-term survival 
strategy employed by bacteria in the 
environment and during infection due to the 
resistance to hostile conditions, antibiotic 
treatment and to immune evasion (4, 5). Biofilms 
have been demonstrated to be more than 1000-
fold resistant to treatment with conventional 
antibiotics normally used to treat planktonic cells 
(6). Resistance to antibiotics in biofilms is 
multifactorial and due to poor penetration of 
antibiotics into the biofilm through the ECM, the 
presence of multidrug resistant persister cells, 
slow growth rates and antibiotic indifference, as 
well as the expression of specific resistance 
mechanisms of cells within biofilms (6-8).   

Biofilms are often associated with human disease 
and are responsible for the majority of bacterial 
infections (9). Biofilm-related infections develop 
on mucosal surfaces and include lung infections 
of Cystic Fibrosis (CF) patients, chronic 
obstructive pulmonary diseases, otitis media, 
sinusitis, and chronic wound infections (10-14). 
Biofilms also commonly develop on the surfaces 
of medical implant devices including catheters, 
prosthesis, pacemakers, and intrauterine 
devices, to name a few, and are responsible for 
50% of nosocomial infections that occur when 
patients have indwelling medical devices (15). 
Medical implants or devices such as an 
indwelling catheter or a respiratory apparatus 
are particularly susceptible to biofilm formation 
because the host immune response is reduced in 
areas of the body in contact with foreign devices 
(16). As a result, infections associated with 
medical implants and devices are a problem due 
to growth of the bacteria, a lowered immune 
response, and resistance of the bacterial biofilm 
to antibiotic treatment. The only solution is most 
often to remove the implant, which is traumatic 
to the patient and costly (17). 
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Biofilms play a major role in infectious disease 
and pose a significant challenge in the treatment 
of these infections. Since conventional antibiotics 
were designed to target planktonic cells, there 
are currently no drugs available to specifically 
treat biofilm-related infections (5, 18). It is 
imperative to develop new treatments that will 
be effective in eliminating these infections and 
reducing the costs associated with complications 
from the use of medical devices. This review will 
outline the advances made in the discovery of 
novel antibiofilm strategies with the potential to 
treat biofilm-related infections. 
 
Some antimicrobial peptides have antibiofilm 

activity 

Antimicrobial peptides (AMP), also known as 
host defense peptides (HDP), are conserved 
antimicrobial molecules that are produced by 
virtually all organisms (20, 21).  These peptides 
are composed of 12-50 amino acids with an 
excess of lysine and arginine residues, which 
make them cationic (20, 21).  They are also very 
hydrophobic, which enhances their antimicrobial 
activity as they are able to interact with bacterial 
membranes (22). Most AMPs have direct 
antimicrobial activity by disrupting bacterial 
membranes, and others have immune 
modulating activity without strong direct 
antimicrobial effects (8). A variety of natural and 
synthetic peptides have recently been shown to 
have a novel antibiofilm activity against both 
Gram-positive and Gram-negative bacteria (23-
32). Synthetic antimicrobial peptides may be 
good candidates for treatment of biofilms as 
they are small, less costly to produce, 
demonstrate low toxicity, are relatively stable, 
and have specificity for biofilms in lower doses 
than the minimum inhibitory concentration 
(MIC) for planktonic cells (22). 
A number of synthetic and naturally occurring 
peptides have been shown to have broad-
spectrum antibiofilm activity (23-32).  One 
synthetic peptide of interest, 1018, based on the 
amino acid sequence of a peptide named Bac2a, 
derived from the naturally occurring bovine HDP 
bactenecin, was found to be very effective 

against biofilms produced by a number of 
pathogenic bacteria (27).  Although this peptide 
did not exhibit strong antimicrobial activity 
against planktonic cultures, it did demonstrate 
antibiofilm activity against Pseudomonas 
aeruginosa, Escherichia coli, Acinetobacter 
baumannii, Klebsiella pneumoniae, methicillin-
resistant Staphylococcus aureus (MRSA), 
Salmonella enterica, and Burkholderia 
cenocepacia at sub-MIC concentrations (0.8 
µg/ml for dispersal and 10 µg/ml for cell death) 
(30). In addition it was found that this peptide 
targeted the stress response nucleotide ppGpp 
for degradation. This stress response effector 
normally binds to RNA polymerase in order to 
induce biofilm formation and maintenance (30). 
Given the conserved function of ppGpp in Gram-
positive and Gram-negative bacteria, this may 
explain the broad-spectrum antibiofilm activity 
of peptide 1018 (33). 
Our recent research has been aimed at 
evaluating the effectiveness of a number of 
synthetic AMPs for activity against biofilms using 
the BioFlux microfluidics system, a 
physiologically relevant system that employs the 
use of shear flow for the development of in situ 
biofilm formation. A number of synthetic 
peptides were developed based on the sequence 
of 1018 and these were tested for antibiofilm 
activity using this relatively high throughput 
screen (HTS) system that enables screening of 
synthetic peptides with visualization and analysis 
of cell viability following treatment (34). 
Synthetic AMPs (274) were screened for 
effectiveness against biofilms in a 48-well plate 
format. Images of the biofilms were acquired 
following peptide treatment in both bright-field 
and fluorescence in order to visualize the 
integrity of the biofilm, the amount of viable cells 
(due to a chromosomal insertion of green 
fluorescent protein which is expressed in 
growing cells) and non-viable or membrane 
compromised cells (determined by propidium 
iodide staining), and to calculate the overall 
destruction of the biofilms.  A number of 
peptides were found to demonstrate significant 
efficacy in eliminating biofilms and decreasing 
the viability of the cells, including some D-
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enantiomeric peptides (35).  A number of 
peptides were effective against P. aeruginosa 
biofilms, and we have recently identified some 
peptides effective against K. pneumoniae 
biofilms as well (in preparation).  All of the 
effective peptides were found to have MIC 
values much higher than the concentration 
needed to eliminate or reduce biofilm 
development. The specificity of these peptides 
for biofilms raises questions about the structures 
of these particular peptides and their mechanism 
of action. Segev-Zarko et al. (32) recently found 
that a number of antimicrobial peptides 
composed of 6 lysine and 9 leucine residues in 
alternative sequences, had differing effects on 
biofilms. Some peptides degraded biofilms by 
killing embedded cells and some by causing 
bacteria to detach or disperse (32).  The 
elucidation of mechanisms of action of AMPs on 
biofilms and whether they inhibit or eliminate 
biofilms will add valuable insights in the adoption 
of these peptides for the treatment of biofilm 
infections (32). 
 
Bacteriophage therapy to fight biofilm 

infections 

Bacteriophages are another approach to 
consider in the treatment of biofilm infections. 
These viruses infect and replicate within the 
bacterial cell and then lyse their host. 
Bacteriophage therapy has actually been used 
for over 50 years, but the emergence of multi-
drug resistant bacteria and the continued 
development of resistance in many bacteria have 
prompted more studies into the use of 
bacteriophage as a means of treating infections 
(36). The advantage of using bacteriophage is 
that they can infect and kill both antibiotic 
sensitive and resistant bacteria (9).  
A number of studies have been conducted that 
have shown the efficacy of using bacteriophages 
in biofilm infections (36-38).  Bacteriophages 
have been shown to be effective against wound 
infections caused by S. aureus and multi-drug 
resistant S. aureus biofilms (39, 40). They have 
also been shown to clear biofilm infections 
caused by P. aeruginosa (41). Two lytic phages 

were recently described that were found to 
reduce Staphylococcal biofilms by 2 logs and the 
frequency of bacteriophage resistance 
developing in the bacteria was sufficiently low to 
merit these bacteriophages as potential 
candidates for therapy (42). Another recent 
study found a bacteriophage, EFDG1, to have 
effective lytic activity against planktonic and 
biofilm cultures of Enterococcus faecalis and E. 
faecium isolates, regardless of their antibiotic 
resistance profile (43). In addition, EFDG1 
efficiently prevented an ex vivo E. faecalis root 
canal infection (43). There are a number of 
advantages in using bacteriophages to treat 
biofilm-related infections. Phages are specific, 
inexpensive, should not affect the normal 
microflora due to their specificity for one 
organism, and are synergistic with conventional 
antibiotics (44). Further studies into the effect of 
phage therapy and synergy of bacteriophages 
with antibiotics may prove to be a useful strategy 
in the treatment of biofilm infections. 
The other advantage to using bacteriophages is 
the potential to engineer these viruses to have 
increased killing efficiency against biofilms. 
Bacteriophages frequently express enzymes to 
degrade bacterial cell walls and cell contents. 
Hughes et al. (45) identified the importance of 
the enzymatic attack of SF153b bacteriophage 
against Enterobacter agglomerans strain 53b 
biofilms. A depolymerase enzyme disrupts the 
EPS layer and allows the phage to infect and kill 
biofilm cells, events that lead to the disruption of 
the biofilm structure. Other studies have 
demonstrated T7 engineered phage expressing 
the EPS-degrading enzyme Dispersin B to be 
more efficient in killing E. coli biofilms than 
phages alone (46). A recent study utilizing a 
phage expressing a lactonase enzyme that 
degrades quorum sensing bacterial signaling 
molecules was shown to be effective in 
preventing biofilm formation in mixed cultures 
of P. aeruginosa and E. coli (47).  

 
Small molecules with antibiofilm activity that 

reduce virulence 



39  Journal of Postdoctoral Research June 2015: 36–49 
 

The universal first step of biofilm formation is 
attachment to a surface and several approaches 
are aimed at blocking initial adhesion. Using a 
rational approach, Svensson et al. (48) designed 
a new class of small molecules, derived from the 
saccharide binding PapG adhesin molecule from 
E. coli type 1 pili. These molecules are named 
pilicides and mimic the pilus protein and target 
periplasmic chaperones, thereby blocking pili 
assembly and function. Reduced pili expression 
decreases virulence and biofilm formation in 
uropathogenic E. coli (UPEC). Similarly, other 
peptidomimetic ring-fused 2-pyridones that 
share common chemical structures with pilicides 
are able to prevent UPEC biofilm formation in 
vitro and in vivo. These compounds prevent 
biofilm formation in a curly fiber- and type 1 pili-
dependent matter, attenuating UPEC virulence in 
mice urinary tract infection model (49, 50). 
Considering the high degree of conservation and 
the importance of pili and other chaperone 
pathways in Gram-negative bacteria, pilicide-
analogues may be useful for future therapeutic 
approaches in prevention of biofilm formation 
(49, 51, 52). 
Scientists have also searched for potential active 
antibiofilm compounds among small molecule 
libraries. Regarding natural products, previous 
reviews have described the antibiofilm 
properties of plant extracts, such as garlic and 
cranberries, halogenated furanones isolated 
from the red algae Delisea pulchra, salicylic acid 
and cinnamaldehyde, among others (53, 54). The 
polyphenolic compound tannic acid found in tea 
was shown to block S. aureus biofilm formation, 
as well as limit oral colonization in a rat infection 
model (55).  
Quorum sensing (QS) signaling systems are 
responsible for the coordination of gene 
expression at a bacterial community level, which 
includes controlling the expression of virulence 
factors, as well as influencing the formation of 
biofilms (19, 54). Many natural products act as 
quorum sensing inhibitors, and therefore have 
beneficial effects towards reducing biofilm 
formation (54). In addition, QS inhibitors also 
reduce the virulence of P. aeruginosa and B. 
cenocepacia in multiple animal models of 

infection, and importantly, are synergistic when 
combined with conventional antibiotics, leading 
to increasing bacterial killing  (54, 55, 56).  
Analogs of bromoageliferin, a natural product 
from marine sponges, were shown to have 
antibiofilm activity against P. aeruginosa (57). 
The same group later characterized an 
antibiofilm molecule with broad-spectrum 
activity. Dihydrosventrin (DHS) was identified 
from screening of a 50-member library of 
derivatives of bromoageliferin and was able to 
inhibit and disperse biofilm in P. aeruginosa 
(PAO1, PA14 and mucoid isolate), A. baumannii, 
and Bordetella bronchiseptica (58). Further 
derivatives of DHS were constructed as a library 
of 2-aminoimidazole (2-AI) analogs, and were 
very effective in both inhibiting biofilm 
formation, as well as dispersing preformed 
biofilms (59). Several of these compounds have 
antibiofilm activity at concentrations less than 
their bactericidal concentration, similar to some 
antimicrobial peptides (53, 59). A compound 
from the 2-AI library appeared to block biofilm 
formation through a zinc-chelating mechanism, 
as the compound could bind zinc, and excess zinc 
blocked its antibiofilm activity (60). Other 2-AI 
derivatives were also shown to act synergistically 
with antimicrobials to sensitize resistant bacteria 
without showing increased toxicity in 
combination with antibiotics, supporting its 
possible use as a therapeutic adjuvant for 
resistant bacterial treatments (61, 62). 
 
HTS for identification of molecules with 

antibiofilm activity 

Another approach used by researchers for the 
identification of molecules active in preventing 
biofilm formation is the screening of large 
chemical libraries. The use of HTS techniques 
allows the testing of a massive number of 
samples in a short period of time. One of the 
earliest HTS used a luminescence-based 
approach to quantitate P. aeruginosa biofilm 
biomass formed on 384-well format pin devices, 
as opposed to conventional crystal violet (CV) 
biofilm staining (63). After screening 66,095 
compounds, 30 molecules were identified that 
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blocked biofilm attachment by greater than 50% 
when used at concentrations less than 20 μM 
(63).  
Other HTS approaches were devised that 
targeted specific mechanisms of biofilm 
formation. The signaling molecule bis-(3'-5')-
cyclic dimeric guanosine monophosphate (c-di-
GMP) accumulates under conditions that 
promote EPS production and biofilm formation, 
and appears to be universally conserved in 
Gram-negative bacteria (64). Therefore, 
researchers have screened for antibiofilm 
molecules that block the synthesis of c-di-GMP 
or that reduce the expression of c-di-GMP-
controlled promoters. In the first approach, the 
antibiofilm screen was to identify compounds 
that reduced the congo red (CR) phenotype of E. 
coli colonies on agar plates, as it is known that 
EPS and curli production is required for the red 
phenotype (64). Screening of a 1,120-member 
drug library allowed the identification of 
sulfathiazole, as an inhibitor of c-di-GMP 
biosynthesis.  
In a second c-di-GMP targeted approach, 
Sambanthamoorthy et al. (65) screened 
approximately 66,000 compounds by using a 
transcriptional luciferase reporter to a c-di-GMP 
responsive promoter and searched for 
compounds that reduced expression and 
luminescence. Antibiofilm compounds that 
repressed this transcriptional reporter and also 
blocked biofilm formation in Vibrio cholerae 
were identified. The lead compound was the 
molecule 5-methoxy-2-[(4-
methylbenzyl)sulfanyl]-1H-benzimidazole, which 
had broad-spectrum antibiofilm activity and 
blocked biofilm attachment when polystyrene 
surfaces were coated with the compound (65). 
However, this lead compound did not cause 
dispersion from preformed biofilms. 
HTS for antibiofilm drugs have also been 
performed using a 3,080-member in-house pre-
fractionated marine natural products library to 
identify inhibitors of V. cholerae biofilm 
formation (66). In this approach, biofilms were 
quantitated in 384-clear well bottom microplates 
using epifluorescence microscopy to image gfp-
tagged V. cholerae biofilms in a single focal 

plane. This HTS lead to the further identification 
of a novel antibiofilm compound auromomycin 
(67). Recently, the same group extended this HT 
imaging approach to identify biofilm inhibitors, 
as well as inducers of dispersal in P. aeruginosa 
biofilms (68). 
Although numerous effective antibiofilm 
molecules have been identified to date, most of 
them lack toxicological and pharmacological 
testing for a better understanding of their 
mechanism of action (69). Expecting to bypass 
this difficulty and aiming to come out with a new 
antifungal compound that could be easily 
approved for faster commercialization, Siles et 
al. (70) looked for antibiofilm agents against 
Candida albicans in a 1,200-member small 
molecules library constituted of Food and Drug 
Administration (FDA)-approved compounds. 
These compounds have well understood 
mechanisms of action, pharmacological 
characteristics and toxicological properties. Their 
screen identified 38 compounds from 
heterologous pharmacological classes with 
potent antifungal biofilm properties, reducing 
Candida biofilm formation over 50%. This 
significantly higher rate of “hits” (3.25%), 
compared to other HTS reports (<0.1%), is not 
unexpected when acknowledging that the library 
contained only drug-like molecules. From the 38 
initial hits, follow up dose-dependent assays 
identified two polyene antifungal drugs, six 
antiseptics/antimicrobials and three 
miscellaneous drugs that were effective against 
formation and destruction of preformed C. 
albicans biofilms (70). 
 
Compounds and enzymes to disperse or 

dissolve biofilms 

Another possible approach treat bacterial 
biofilms is the use of compounds that cause 
dispersion from aggregates or enzymes that 
degrade the polymers of the ECM and thereby 
dissolve biofilms. One of the earliest dispersal 
agents was the discovery of cis-2-decenoic acid 
(C2DA), an unsaturated fatty acid produced by 
several types of bacteria (71). Other biofilm 
dispersants include D-amino acids, which are 
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produced by bacteria throughout growth (72), 
salvipisone, a diterpenoid isolated from hairy 
root of Salvia sclarea (73), are able to disperse 
biofilms in a range of Gram-positive and Gram-
negative clinically relevant bacteria.  
Biological surface-active agents, also known as 
biosurfactants, are a heterologous and versatile 
class of chemicals with amphiphilic properties, 
produced by microorganisms (74). Biosurfactants 
are another promising class of substances with 
possible implementations on the treatment of 
biofilm-related infections. In a recent review, 
Banat et al. (74) highlighted some properties of 
biosurfactants towards clearance or prevention 
of biofilms, including inhibition of initial 
adherence and disruption of biofilm structure, in 
a range of bacterial and fungal strains. 
Synergistic inhibition effect with conventional 
antimicrobials has also been described (75). 
Polysaccharides (PS) are also a class of natural 
substances that have been recently shown to 
possess non-microbicidal antibiofilm properties 
(76). In a review by Rendueles et al. (76), several 
examples of antibiofilm PS (APS) are described, 
including a secreted E. coli group II capsular PS, 
that blocked biofilm formation of both Gram-
positive and Gram-negative bacteria (76, 77). 
Interestingly, known matrix polymers that 
promote aggregation in P. aeruginosa can 
actually prevent biofilm formation by other 
species (76). APS were recovered as secreted 
products from planktonic, agar and biofilm 
cultures, but membrane-linked 
lipopolysaccharide also possesses antibiofilm 
properties. These compounds do not inhibit 
growth, but are generally thought to act as 
biosurfactants, capable of modifying cell-surface 
interactions (76). 
The complex constitution of the biofilm matrix 
has been described. As there is a considerable 
variation among biofilm constituents within 
different species (78), multi-enzymatic 
formulations seem to be necessary for an 
adequate biofilm control (79) and it has been 
proposed already that enzymatic degradation of 
EPS, proteins and eDNA are involved in cell 
dispersal from biofilms and may be significant for 
the development of new therapies (80-82).  

Dispersin B is a naturally occurring enzyme 
produced by Aggregatibacter 
actinomycetemcomitans and known to degrade 
EPS. This enzyme inhibits biofilm formation and 
disperses preformed biofilm in diverse bacterial 
strains. In a recent study, Gawande et al. (83) 
showed that combined therapy of Dispersin B 
with broad-spectrum KSL-W cationic 
antimicrobial peptide showed synergetic 
antibiofilm and antimicrobial activity in MRSA, S. 
epidermidis, Coagulase-negative Staphylococci 
(CoNS), A. baumannii, Vancomycin-resistant 
Enterococci, K. pneumoniae, and P. aeruginosa 
chronic wound infection-related bacteria. 
Recombinant human DNase I, Dornase alfa 
(Pulmozyme®), is one of the therapies used to 
reduce mucus thickness and improve lung 
function in people with CF (69, Frederiksen et al, 
2006). This recombinant enzyme also degrades 
eDNA of bacterial biofilms and causes a 
significant decrease in bacterial colonization in 
the lower respiratory tract of CF patients (84), 
Deoxyribonuclease has broad-spectrum 
antibiofilm activity because of the universal role 
of eDNA in the biofilm matrix (85). In addition to 
EPS and DNA degrading enzymes, proteases or 
chitinases are also useful to reduce biofilm 
formation (86, 87).  
This data highlights the importance of diverse 
biofilm matrix polymers in the development and 
maintenance of the biofilm structure, and the 
possibility of using enzymes in 
prevention/dispersal of these bacterial 
communities. Despite the success in degrading 
biofilms, caution should be exercised with this 
approach as releasing planktonic bacteria may 
also pose a risk to increased dissemination and 
possibly increased severity of disease. 
 
Conclusions 

It has been estimated that 80% of infections are 
caused by biofilms. We have presented a number 
of strategies that have shown significant promise 
towards the development of antibiofilm 
treatments. These treatments have 
demonstrated either inhibition or degradation of 
biofilms, either alone or in synergy with 
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conventional antibiotics. Biofilms can be targeted 
by dispersal using certain small molecules or 
AMP or by degradation of the ECM using 
enzymes or engineered bacteriophage. 
Additionally, the cells within the biofilms may be 
lysed by bacteriophages and AMPs. Some 
compounds have been shown to inhibit biofilm 
formation rather than eliminate it, by inhibiting 
specific pathways essential to biofilm formation. 
Some of the treatments described in this paper 
may achieve more than one function, such as 
dispersal and killing, or antivirulence activity. 
Finally, HTS has facilitated the identification of 
many new antibiofilm candidates. 
Some of the potential advantages of these 
strategies are that they may be less toxic and 
effective at concentrations lower than the 
concentration to inhibit planktonic cells.. 
However, as indicated, some of the compounds 
identified need to be further characterized in 
terms of toxicity and required dosage. 
Compounds or molecules that have antibiofilm 
activity will also need to be characterized 
structurally and their mechanism of action on 
biofilms needs to be better studied. The variety 
of solutions identified for the treatment of 
biofilm infections is very promising in light of the 
urgent need for alternatives to conventional 
antibiotics.   
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