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Abstract 
Alzheimer’s disease (AD) is a devastating illness with unknown etiology and no cure.  The predominant 
model for studying AD has been transgenic mice with human mutant amyloid-ß (Aß) protein designed to 
reflect inherited familial forms of AD (fAD).  However, this approach only reflects a small percentage of 
the AD population and has not lead to successful therapeutics.  There is recent and compelling evidence 
that the Aß is not simply a misfolded protein that accumulates to eventual AD, but instead a protein 
with physiological roles that responds to several pathological contexts.  If we better understand the 
contexts that stimulate Aß accumulation, and the character of its response, we can refocus research on 
targets upstream of Aß.  In order to do this, the field needs models of late-onset AD (LOAD) that do not 
rely on human transgenes in mice.  This perspective outlines models of contextually-driven Aß 
accumulation, animals with naturally elevated Aß and a potential human organ model that may be 
employed to better understand the role of Aß in AD.   
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Introduction 

AD is a debilitating progressive 
neurodegenerative disease with no cure that 
results in lack of cognitive function and extreme 
memory loss.  AD may manifest relatively early 
due to inherited genetic susceptibility common 
in certain families.  Approximately 5% of all AD 
patients have fAD; the remaining majority 
develops LOAD.   Aß is a protein generally 
believed to be the driving etiology in AD, largely 
because genetic mutations related to fAD 
involve its production.  There is yet no 
recognized etiological factor that can account 
for LOAD with certainty, though Aß is 
considered one of the best candidates.  
However, there are inconsistencies with an Aß-
centered view of disease etiology.  For example, 
nearly one-third of cognitively healthy 
individuals have sufficient Aß protein 
accumulation to be diagnosed with AD but 
remain cognitively normal, and a similar 
proportion of those diagnosed with AD do not 
have sufficient Aß accumulation to maintain an 
AD diagnosis after autopsy1,2.  These data 
suggest that Aß is not sufficient or necessary to 
drive dementia, though it is required for the 
diagnosis of AD.  This may be in part because Aß 

is not inherently pathological.  For example, 
neuroinflammation is sufficient to drive AD-like 
memory impairment in wild type (WT) rats3,4, 
and removal of microglia is sufficient to 
significantly improve memory in mice with 
three fAD human transgenes (3xTg-AD) without 
altering Aß levels5.  While Aß might not be a 
singular causative factor in the development of 
AD, more than half of research in the field is 
devoted to the pathological consequences and 
elimination of Aß6,7.   Therefore, to progress in 
our understanding of AD, we must learn more 
about the physiological role of Aß. 

Aß is generally considered to be a toxic, 
misfolded protein.  However, experimental data 
suggests that it plays a physiological role in 
immunity against microbes8–13, the acute phase 
after injury14,15, T cell regulation16,17, 
cerebrovascular modeling18, tumor 
suppression19–21 and synaptic signaling22.   These 
functions of Aß are consistent with adverse 
events reported in clinical trials that target Aß, 
including increased rates of infection23–25,  
meningoencephalitis26,27, microhemorrhages 
and edema28–32, cancer24,31 and seizures29.  To 
better understand the physiological role of Aß 
in normal and pathological conditions, the  
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production of Aß should be contextually-driven.  
Unfortunately, mice with fAD transgenes that 
overexpress Aß (Tg-AD) are a poor model for 
the physiological role of Aß in normal 
conditions, and can represent the physiological 
role of Aß in pathological conditions only if 
challenged.  This perspective will outline 
potential models of Aß accumulation that may 
better represent LOAD.  If triggers of Aß 
elevation and aggregation are further 
characterized, then we will gain insight into the 
etiology of LOAD and can fundamentally alter 
our research strategy (see Error! Reference 
source not found.).  Using new models to 
identify other targets will increase 
opportunities to achieve clinical efficacy in the 
large population of LOAD patients, the 
overwhelming majority of AD.  

 
Experimentally-driven Aß  

Aß can be driven in WT animals and 
potentiated in Tg-AD by experimental 
manipulations that include immune activation, 
cell-cycle reentry, traumatic injury and 
cerebrovascular injury (see Error! Reference 
source not found.).  A number of factors 

amplify Aß production in cells, but this 
perspective concentrates only on in vivo animal 
models.   

Lifetime infectious burden is increased in 
AD33 and risk of AD is increased by the presence 
of viral and bacterial infections34–37.  Evidence of 
microbial infection is found in AD plaque cores 
and brain tissue, including the presence of 
herpes simplex virus 138, spirochetes39 and 
fungi40.  Aß fluctuates during the course of 
infection in humans in a manner that suggests 
Aß is elicited by infection and subsides with 
resolution of infection41–46.  A number of 
immune activators stimulate Aß production and 
related AD characteristics in vitro47–55 and in 
rodents.  Treatment with the viral mimetic 
polyinosinic:polycytidylic acid (Poly I:C) 
increases hippocampal Aß and memory 
impairment in WT mice56 and increases 
extracellular Aß in Tg-AD mice57.  The bacterial 
mimetic lipopolysaccharide has similarly been 
reported to increase Aß production in WT 
rodents58–60 and to increase both Aß and 
phosphorylated tau (pTau) in aged Tg-AD 
mice61–63.  Multiple live bacteria drive Aß 
production in rodent models as well.  The 
bacteria H. pylori increases Aß and produces 
memory impairment in WT rats64 and B. 
pertussis increases Aß in Tg-AD mice65.  
Similarly, infection with C. pneumoniae 
increases Aß production in a way that is 
synchronously tied with the course of infection 
in WT mice; when the infection abates, Aß 
resides66–68.  

Cell-cycle reentry is a process characteristic 
of cancer that should be absent in the 
terminally differentiated neurons of the AD 
brain but is instead common69.  Activators of 
cell-cycle reentry stimulate Aß production in 
vitro70 and in mice.  Cell-cycle reentry can be 
initiated by conditional transgenic expression of 
simian virus 40 large T antigen oncogene 
produces Aß and tau deposits as well as 
neuronal loss in mice that do not harbor a 
human fAD transgene71.  Impressively, this is 
the only known model to achieve the trifecta of 
AD-like pathology in the absence of fAD 

Figure 1. Targeting triggers of Aß alters the conventional 

approach. The conventional approach to Alzheimer’s (AD) 

research is to investigate the downstream pathological 

consequences of Aß, primarily in mouse models that harbor a 

familial AD transgene, and to target the suppression or removal of 

Aß.  However, this approach has not yet resulted in clinical 

efficacy.  This review outlines models of triggers which elevate Aß 

levels and promote aggregation in wild type and transgenic 

animals.  By investigating triggers of Aß, the therapeutic target is 

moved upstream, and diversifies our research strategy. 
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transgenes, and thus may be more informative 
about the role of Aß than more popular Tg-AD  

 
models that do not faithfully recapitulate these 
aspects of AD.   

Traumatic brain injury in humans suggests 
that Aß may respond to injury and reside during 
recovery72–76.  Traumatic injury produced by 
controlled cortical impact (CCI) in rodents also 
drives dynamic production and recession of Aß.  
For example, CCI increases enzymes in the 
pathway to Aß production in WT rats77.  CCI 
increases Aß in Tg-AD mice within one day and 
potentiates Aß deposition, though Aß levels 
return to normal over time78,79.  Furthermore, 
the interaction between CCI and Aß are 
influenced by apolipoprotein E genotype80, the 
strongest known genetic risk factor for LOAD.  
While traumatic injury is clearly not a model of 

LOAD, we can use it to learn about the 
physiological functions of Aß. 

Cerebrovasculature pathology is highly 
comorbid with AD and a likely contributor to AD 
etiology81,82.  Cerebrovascular pathology also 
upregulates Aß production and draws Aß to the 
vasculature in animal models.  For example, 
bleeding induced by needlestick lesions in WT 
rats transiently upregulates Aß and p-Tau near 
the lesion site and longer lasting deposition of 
Aß along the needle tract83.  Stroke is a 
recognized driver of Aß and tau in WT and 
transgenic rodent models (reviewed84).  
Hypertensive stroke prone rats consistently 
present elevations in Aß85,86.  Middle cerebral 
artery occlusion (MCAO) increases Aß 
production in WT rats that peaks in one 
month87,88, and transitions from diffuse deposits 
to more dense plaque-like deposits within nine 

Table 1. Models of increased Aß production and/or aggregation. The table outlines models 

discussed, listing the species, whether Aß is wild type (WT) or an inserted human transgene (Tg-

AD), and the experimental manipulation used to increase Aß.  In some cases the pathway to Aß 

production is elevated, there is evidence of increased Aß levels or Aß aggregation or deposition is 

increased.  The specific effects on Aß of each trigger are described in the accompanying body of 

text.   
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months89.  Blood-brain barrier damage 
generated by injection of endothelin-1 in 
combination with Aß potentiates Aß deposition 
beyond injection of Aß alone90.  Blood-brain 
barrier damage induced by a transgenic model 
of endothelin-1 upregulation in combination 
with MCAO further enhances astrocytic 
production of Aß91, as does surgically-induced 
microhemorrhage in guinea pigs92.  
Microhemorrhages induced by dietary 
hyperhomocysteinemia effect the distribution 
of Aß, drawing it to the cerebrovasculature93.  
Microhemorrhages also effect the rate of Aß 
deposition, as cerebrovascular amyloid 
angiopathy and plaque-like Aß depositions 
increase rapidly after microhemorrhage 
induction with Rose Bengal dye and return to 
the basal deposition rate within one week94. 
Together, these data suggest that 
cerebrovascular pathology may be used to 
promote Aß in WT animals and challenge Tg-AD 
models in a way that can help reveal the role of 
Aß in AD.  
 
Naturally elevated endogenous Aß in animal 
models 

More can be learned about the relationship 
between Aß and AD by evaluating models of 
naturally elevated Aß in addition to transgene-
driven Aß.  Brain Aß is conserved in other 
animal species95, and some develop age-
dependent Aß accumulation or high levels of 
Aß.  These include, but are not limited to, non-
human primates (Caribbean vervets and 
lemurs), canines (beagles) and rodents (octodon 
degus and naked mole rats) (see Error! 
Reference source not found.).   

Vervet monkeys and lemur primates both 
develop age-dependent Aß deposition.  Anti-Aß 
immunotherapy in vervets reduces the load  of 
Aß plaques96.  Lemur primates accumulate Aß 
deposition with age and their Aß sequence is 
more closely related to humans than the Aß 
sequence of mice.  When treated with anti-Aß 
immunotherapy, aged primate lemurs develop 
microhemmhorages97, consistent with 
outcomes of human clinical trials.   Importantly, 
microhemorrhages were not predicted from 

pre-clinical work in Tg-AD mice, suggesting that 
this model of endogenous Aß may reveal 
important information about the physiological 
role of Aß.   

Beagles have an Aß sequence with 
complete sequence homology to human Aß, 
though N-terminal modifications are distributed 
toward a more degradable form of Aß in 
beagles than humans98,99.  Beagles develop 
diffuse amyloid plaques after ten years of age 
and additional dense Aß plaques over time99–101.  
By 15-18 years of age, 73% of laboratory-raised 
beagles had brain amyloid deposits101.  Anti-Aß 
immunotherapy in beagles treated for 
approximately 2 years successfully reduced Aß 
load, but did not impact cognition102; similar to 
the effect these therapeutic approaches have 
had in human trials.   

Octodon degus are a long-lived South 
American rodent with an endogenous Aß 
sequence that closely resembles human Aß, 
differing by only one amino acid whereas the 
Aß sequence in WT mice and rats differs by 
three amino acids103,104.  Relatively young 
octodon degus develop vascular Aß 
accumulation, and aged octodon degus display 
a wide range of AD-like attributes, including 
intra- and extracellular Aß deposits, white 
matter pathology, intracellular tau, 
neuroinflammation, cell death, synaptic 
dysfunction and behavioral impairment104–108.  
Therefore, octodon degus may be a natural 
animal model of AD and can provide valuable 
insight into its pathogenesis109. 

In contrast, naked mole rats also have high 
levels of Aß but do not develop age-associated 
characteristics of AD.  Naked mole rats also 
have naturally high levels of Aß that is only one 
amino acid removed from the human sequence 
and equally toxic to mouse neurons110,111.  
Though Aß levels in the naked mole rat are 
elevated throughout the lifespan at levels 
similar to 3xTg-AD mice that harbor multiple 
fAD genes, Aß  does not increase with age and 
plaque-like aggregates are not observed in this 
rodent110.  In fact, they have the longest 
longevity quotient of any known rodent, living 
approximately 30 years, and remain very  
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healthy112–114.  The absence of pathology in the 
presence of high Aß over a lifetime suggests 
that Aß is not toxic in this model, and this is 
either because Aß is not inherently toxic or  
because naked mole rats are able to 
compensate for its presence.  In addition to 
extreme longevity, naked mole rats are also 
known for maintained health and cancer 
resistence115.  As discussed above, cell-cycle 
reentry associated with cancer is present in AD 
and stimulates Aß production.  Yet, there is a 
strong inverse relationship between AD and 
cancer116–118.  It is possible that Aß, which can 
be cytotoxic and suppresses tumor growth19–21, 
is protective against cancer but permissive for 
AD.  Therefore, the naked mole rat is a unique 
and relevant model for studying Aß. 

 
Human  

Ideally, the relationship between Aß and AD 
would be elucidated in humans, but imaging 
and post-mortem analysis can only give 
snapshot views.  Aß can be induced in human 
cell lines.  In particular, pluripotent stem cells 
derived from brain tissue better represent the 
size, function and context of brain than other 
human-derived cell systems and are becoming 
an extremely useful tool to investigate the 
effects of human Aß and AD-related genetic 
patterns119.  Various triggers of Aß can be tested  

 
in these cell lines, and this can give us insight 
into the function of Aß.  For example, various 
microbes induce Aß production and aggregation 
in animal cell lines and animal models.  
Furthermore, Aß has antimicrobial properties 
that have been demonstrated in culture 
systems.  Evidence that Aß is triggered by and 
fights against microbial infection would be even 
more compelling in human brain cell systems, 
particularly if these effects are different in 
those derived from patients with AD or AD-
related genetics.  In addition to cell lines, Aß is 
found in various other human organs in the 
context of pathology120–122, but only one is 
particularly suited for experimentation: the 
placenta.   

Aß in the placenta is a newly discovered and 
relationship that deserves further exploration, 
because it may offer a unique way to model AD 
in a human organ. Recent evidence 
demonstrates that Aß accumulates in the urine 
of women with preeclampsia (PreE), a condition 
that effects 5% of pregnancies, and may be a 
better prognostic of clinical outcome than the 
current clinical standards123. Furthermore, 
enzymes that process Aß are increased in the 
placenta in addition to plaque-like Aß deposits.  
To date, it is unknown whether PreE is a 
predictor of later AD; clinical cohorts that have 
pregnancy records with reliable PreE diagnoses  

Table 2. Models of naturally increased Aß production and/or aggregation. Animal models of 

naturally-elevated Aß are outlined.  This table is not an exclusive list of species that develop Aß, 

but lists models that lend themselves to research.  In general, species that have naturally 

increased Aß levels and/or deposition have an Aß sequence identical to, or 1 amino acid (AA) 

away from, the human Aß sequence.  In all cases, Aß has been documented to form aggregates 

with age with exception of the naked mole rat, which has high Aß levels but no evidence of AD-

like deposits.   
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(beginning in the 1960’s) are just beginning to 
crest the age at which early AD will manifest.  
Like AD, PreE has no known etiology and no 
known cure. 

PreE parallels some aspects of AD, albeit on 
the time scale of months instead of decades; 
making pregnancy and the post-partum period 
an unlikely but attractive time for testing Aß.  
Less contrived than a genetic mouse model of 
fAD, the placenta offers human Aß in a human 
organ experiencing a human environment.  Aß 
can be evaluated in collected urine samples and 
in placentas after birth, which can be obtained 
readily and allow for testing that cannot be 
completed on postmortem brain tissue.  
Additionally, placentas from normal 
pregnancies can be sectioned into explants and 
tested in vitro using a within-subjects design.  
While people only get AD once, many women 
have multiple pregnancies.  Interestingly, PreE 
is only repeated in approximately one third of 
subsequent pregnancies.  This implies that 
there is either a trigger for Aß or a 
compensatory mechanism to protect against Aß 
in later pregnancies.  For this reason, evaluating 
Aß during PreE offers a window of insight into 
AD that cannot be obtained from evaluating the 
human brain or transgenic mice. 
 
Conclusion 

Models exist that can be utilized to better 
represent LOAD, the form of AD that is by far 
the most common.  These include experimental 
manipulations that stimulate Aß production, 
animals that naturally produce high levels of Aß 
and the human placenta, which has the 
potential to develop plaque-like deposits and is 
easily obtained.  To date, all clinical trials for AD 
targeting Aß have failed, and some have been 
halted for serious adverse events in a subset of 
the population.  This record of failure suggests 
that reducing Aß is consequential, potentially 
because Aß has important physiological roles in 
normal and pathological contexts.  These roles 
will be better revealed with models that 
complement existent Tg-AD models. 
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