
Postdoc Journal                                                                                                    Journal of Postdoctoral Research 
Vol. 3, No. 11, November 2015                                                                                      www.postdocjournal.com 

Insight into the mechanism of mitochondrial DAMP release during sepsis 

Naeem K. Patil M.D., Ph.D. 
Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232. 
Email: naeem.patil@vanderbilt.edu 
 
Abstract 
Recent studies have shown that mitochondria derived damage associated molecular pattern molecules 
(mtDAMP) are increased in the blood circulation of patients suffering from severe injuries and sepsis. 
DAMP’s (including mitochondrial DNA and proteins) are considered to be pro-inflammatory and one of 
the important mediators of ongoing systemic inflammation during sepsis. The mechanism of mtDAMP 
release during sepsis is currently enigmatic. In this regards, the recent paper by Kana et al. [1] in 
Autophagy shows that upon lipopolysaccharide stimulation of primary hepatic cells, active extracellular 
release of mtDAMP occurs through the exocytosis of autolysosomes. Inhibition of the autophagy 
process attenuated the mtDAMP release from the cells. These data demonstrate the active role of 
autophagy in secretion of cellular proteins from the cells during inflammatory conditions like sepsis. This 
paper provides important insight into the mechanism of sepsis induced mtDAMP release and provides 
background for future investigations. 
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The paper by Kana et al. demonstrates 
a mechanistic role for autophagy in the process 
of mtDAMP release from the cell [1]. The 
seminal work in the field by Hauser and 
colleagues demonstrated that severe trauma 
releases endogenous mitochondrial damage 
associated molecular pattern (mtDAMP) 
molecules (mitochondrial DNA, mtDNA) into the 
circulation, which can activate the innate 
immune cells and trigger a sepsis like 
inflammatory state [2]. Mitochondria are a 
source of several DAMP molecules, which act as 
endogenous danger signals, like mitochondrial 
DNA and proteins including N-formyl peptides 
cardiolipin, cytochrome c, and ATP to name a 
few[3]. Such mtDAMP’s act similar to the 
bacterial antigens, leading to a state of systemic 
inflammatory response syndrome and 
ultimately multiple organ dysfunction and death 
in severe cases of trauma and sepsis [4, 5]. 
Similar to bacterial antigens, these mtDAMP 
molecules have been shown to activate the 
pattern recognition receptors on innate 
immune cells such as neutrophils and initiate 
inflammatory response and organ injury during 
trauma and sepsis [1-3, 6]. 

Sepsis is a state of severe systemic 
inflammatory response caused by microbial 
infection that can progress to multi-organ 
dysfunction. Studies show that the level of 
mtDAMP molecules is increased in the plasma 
of septic patients and correlate with the 
severity of sepsis [7, 8]. Similarly, animal studies 
also show that bacterial challenge increases the 
extracellular release of mtDAMP molecules 
such as mtDNA [4, 9]. It is conceivable that 
severe trauma can induce massive cell death 
and necrosis, which probably leads to a passive 
release of DAMP molecules into blood 
circulation [3]. Interestingly, organ histology has 
failed to demonstrate remarkable cellular 
damage (apoptotic or necrotic) in septic 
patients or animals that is consistent with 
simply passive release of DAMP molecules. 
Clearly, additional and more focused studies are  
needed to fully understand this process [10]. 
Therefore, the mechanism of sepsis induced 
mtDAMP release is poorly understood.  
 
Autophagy-lysosomal pathway is an important 
cellular process which allows for recycling of 
essential constituents that are recovered during 
lysosomal degradation of cellular components 
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including mitochondria [11, 12]. Previous 
studies from the same laboratory have shown a 
significant induction of autophagy and extrusion 
of mitochondrial proteins in the plasma of LPS 
treated rats [13, 14]. LPS is a cell wall 
component of gram negative bacteria and is 
widely used in mechanistic research studies 
relating to sepsis. In an attempt to discover the 
mechanism of mtDAMP release during sepsis, 
Kana et al. now show that lipopolysaccharide 
(LPS) stimulation of primary hepatic cells as well 
as mouse embryonic fibroblasts leads to the 
mitochondrial degeneration, induction of 
autophagy, and extracellular release of not only 
mitochondrial DNA and proteins but also 
autolysosomal luminal proteins including LC3-II 
(microtubule – associated protein 1A/1B-light 
chain 3 - critical autophagy protein). PARK2 and 
PINK1 proteins, which are known to regulate 
mitochondrial autophagy (mitophagy), were 
also detected in the culture supernatants in LPS 
stimulated cells. Furthermore, pharmacological 
inhibition of autophagy and knockout of Atg5 
(another essential protein for autophagy) 
attenuates the release of mtDAMP molecules 
and exposure of released mtDAMP to 
polymorphonuclear leucocytes activates them 
as evident by production of pro-inflammatory 
cytokines. Inhibition of autophagy did not cause 
cell toxicity. Moreover, use of lysosomal 
inhibitors also partially suppressed the release 
of LC3-II and mitochondrial proteins, implicating 
functionally active lysosomal involvement too in 
the secretion of mtDAMP molecules. Therefore, 
the major mechanistic conclusion drawn from 
their results is that mtDAMP molecules are 
released from the cells in an autophagy 
dependent manner. With respect to the above 
results, authors did not discuss the future 
therapeutic implications of these findings and if 
autophagy could be a therapeutic target during 
sepsis. But this study is definitely a good 
starting point for further exploration regarding 
pathogenic relationship between autophagy, 
mtDAMP and sepsis. 
 
Although the findings present by Kana et al [1] 
provide a new insight into the mechanism of 

mtDAMP release during sepsis, still many 
questions remain unanswered and need further 
investigation. Though autophagy dependent 
release of mtDAMP was shown in both hepatic 
cells as well as mouse embryonic fibroblasts, it 
remain to be determined in future studies if this 
is universally true for all tissues. Sursal et al. 
showed that lethal sepsis in primates using 
anthrax bacillus caused sustained elevation of 
mtDNA with only a transient increase in 
bacterial DNA until death, suggesting continued 
tissue damage beyond bacterial clearance. 
Therefore, mtDAMP’s are detrimental during 
sepsis. [4]. On the other hand, autophagy has 
also been shown to play an important role in 
pathogen elimination and host protection 
through a process called xenophagy (pathogen 
targeting to autophagosome) [15]. 
Mitochondrial dysfunction is known to 
contribute significantly to organ injury during 
sepsis [10, 16] and mitochondrial autophagy 
(mitophagy) aimed at clearing damaged 
mitochondria has been demonstrated to occur 
in the liver and lung during sepsis [17-19]. 
Autophagy thus seems to play a role both in 
mitochondrial quality control as well as 
mtDAMP release during sepsis. This raises 
important questions for future studies. Can 
autophagy be modulated in a way to attenuate 
mtDAMP release during sepsis without 
hindering the other processes such as 
mitophagy and xenophagy? Also, could the 
monitoring of autophagy proteins and 
mtDAMP’s be used as prognostic biomarkers of 
sepsis to direct therapy? These are critical 
issues that require further experimentation. 
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