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Abstract Persistent homology is a widely used tool in Topological Data Analysis that encodes
multi-scale topological information as a multi-set of points in the plane, called a persistence dia-
gram. Each of these persistence points is associated with a lifetime (or persistence). Features with
short lifetimes are informally considered to be topological noise, and those with a long lifetime are
considered to be topological signal. We bring some statistical ideas to persistent homology in order
to derive confidence sets that allow us to separate topological signal from topological noise. We
also apply statistical theory to other topological descriptors such as the persistence landscape or
silhouette, rather than working with the original diagrams or data sets. We motivate this work with
three applications.

1 Introduction

Understanding and comparing data sets is a chal-
lenge present across various disciplines. Succinctly
representing a data set as a structure known as a
persistence diagram allows us to easily visualize
and compare the (topological) features present in
a data set. This is an example of topological data
analysis (TDA). In this paper, we focus on the
integration of statistical methods and TDA.

2 Topological Data Analysis

TDA is a field that stems fromMorse Theory [25].
As its own research field, TDA developed in the
late 90s; see [18, 23]. Within the past five years,
TDA has really exploded as a research field, in-
cluding mathematicians, computer scientists, statis-
ticians, as well as domain experts in varying fields
from astronomy [31] to cancer research [28] to
natural language processing [33].

When faced with a data analysis task in any
field, we are often interested in summarizing and
comparing data sets. Often, working with the
data directly is cumbersome. This is where per-
sistent homology comes into play. Persistent ho-
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Figure 1: Left: 25 Points sampled from the
uniform distribution over the uniform circle.
Right: The corresponding pairwise distance ma-
trix (cyan represents small distance).

mology takes a data set describes it succinctly
with a finite set of points in the plane, called
a persistence diagram. Each point in the per-
sistence diagram represents a topological feature
that is present for some view of the data set. The
views of interest depend on the application, but
are often a range of either times or distances. The
point encodes the smallest (birth) time for which
the feature is present and the largest (death) time
for the feature.

For example, consider a set of points sam-
pled from a circle, as shown in Figure 1. We
compute the pairwise distances between every
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Figure 2: Left: Persistence diagram for the VR
filtration of the example of Figure 1. Right: Di-
agram obtained when data points are perturbed.

pair of points to obtain the (symmetric) pair-
wise distance matrix M . Using M , we construct
the Vietoris-Rips (VR) filtration. The VR filtra-
tion is an indexed sequence of nested simplicial
complexes which starts with the complex con-
sisting of n vertices, one corresponding to each
data point, and ends with the complete complex
on these n vertices. Connected components and
loops are tracked as the index of the filtration
increases, giving rise to the persistence diagram;
see Figure 2 (left).

The benefit of considering the persistence di-
agrams, as opposed to the original raw data set,
is that (i) it captures patterns such as connected
components and loops, and (ii) we can compute
a meaningful distances between persistence di-
agrams, such as the Wasserstein or Bottleneck
distances [16, 17]. Moreover, persistence dia-
grams are stable [8, 9, 14, 15]. That is, small
changes in the filtration (e.g., changes induced by
small changes in the data set) will result in small
changes in the persistence diagram. Figure 2
(right) is a diagram computed after slightly per-
turbing the coordinates of the data points shown
in Figure 1. The black dots, which correspond
to components, have moved slightly up or down.
What is most notable, however, is the fact that
two new loops (denoted by the red triangles)
have emerged. We observe that these persistence
points are close to the diagonal, and hence have
a very short persistence (interval of existence in

Figure 3: A persistence diagram with a confi-
dence band (pink). Notice that there are two
statistically significant persistence points.

the filtration). Leveraging the stability results
mentioned above, we can use the bottleneck dis-
tance in order to compare and to cluster data
sets, as we will explore in the next section.

3 Integrating Statistics into TDA

Mileyko et al. studied the space of persistence di-
agrams under the Wasserstein metric, observing
that the space is complete and separable [24].
Moreover, finding the (Fréchet) average of per-
sistence diagrams was studied in [26, 30]. How-
ever, as was observed, the average diagram is
not unique, so concisely representing the means
can become problematic. To overcome this is-
sue, one could instead compute persistence land-
scapes and silhouettes, which do have a unique
mean [7, 13]. Taking the mean of landscapes and
silhouettes allows for statistical analysis, but the
trade-off is that it is more obscure to interpret
than a persistence diagram.

Fasy et al. [21] defined a confidence set for a
persistence diagram. In particular, if D̂ is an es-
timate of the unknown diagramD, we say that D̂
and a distance δ define a confidence set for D if:

P
(
d(D, D̂) ≤ δ

)
≥ 1− α,

where d(·, ·) is an appropriate distance measure
between persistence diagrams and α is a confi-
dence level. In words, any point farther than δ

from the diagonal is statistically significant. We
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Figure 4: Left: Covering the domain with over-
lapping local neighborhoods. Right: Two local
neighborhoods illustrating a large local distance
(top) and a small local distance (bottom).

illustrate this in Figure 3, where we see one signif-
icant cycle and one significant component. Fur-
ther analysis of these confidence sets, of conver-
gence, and of limiting distributions for persis-
tence diagrams and landscapes was studied in [10,
11, 12, 13]

The techniques mentioned above have been
made accessible in the R package TDA1, released
on CRAN in 2014; see [20] for a user guide.

4 Applications

TDA has the potential to be a powerful analysis
tool in many domains. In particular, we high-
light three application areas to demonstrate the
breadth of TDA.

4.1 Road Network Analysis

Today, having your phone or other device record
your GPS location has become commonplace: run-
ners and bikers use it to track their progress,
and companies such as Foursquare collect this
data in order to know how to best advertise to
users of their apps. Considering the former sce-
nario, trajectories in the woods and parks often
do not have recorded paths, so it is not possi-
ble to (meaningfully) snap the paths to a road
(or trail) network. However, one can reconstruct

1https://cran.r-project.org/web/packages/TDA/
index.html

the road network from the GPS trajectories [4].
Most recently, using kernel density estimates and
topological methods has been proposed [1, 32].

The question remains: how accurate are these
reconstructed road networks? To answer this
question, we turn to a concept called persistent
local homology [5, 6, 22]. In particular, for a road
network embedded in a compact domain X, we
cover X with a set of neighborhoods centered on
a regular lattice; see Figure 4. Then, we com-
pare the local structures as witnessed by these
neighborhoods using persistent local homology
and aggregate these local distances [2]. Other
road network comparison algorithms and heuris-
tics do exist; see [3]. However, a full discussion
of these is beyond the scope of the current paper.

4.2 Distribution of Galaxies

That the distribution of galaxies follows a Voronoi
diagram-like pattern comprising of clusters, fila-
ments, and sheets is a well-established assump-
tion in astronomy. These sheets enclose voids,
which many astronomers are interested in better
understanding [27, 29]. With the release of the
Sloan Digital Sky Survey (SDSS)2, an inventory
of astronomical objects (galaxies, stars, quasars)
is now publicly and freely available.

One of the big open questions in astronomy
is: do the observations that are collected match
the models that have been developed? To answer
this question, we look at collection of cubes of
space both from observations (SDSS data set) as
well as from the models. We then ask: are these
two sets of data cubes collected from the same
distribution? Or, is there a critical flaw or bias
in the models? The TopStat3 research group is
currently developing the statistical theory neces-
sary to justify the use of various hypothesis tests
in TDA, focusing on this application of compar-
ing models and observations of the distribution
of celestial objects.

2http://www.sdss.org/
3http://www.stat.cmu.edu/topstat/

https://cran.r-project.org/web/packages/TDA/index.html
https://cran.r-project.org/web/packages/TDA/index.html
http://www.sdss.org/
http://www.stat.cmu.edu/topstat/
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Figure 5: Left: Nuclei forming a telescoping
gland pattern, indicative of Gleason pattern
three. Right: The corresponding persistence di-
agram, showing multiple loops are present.

4.3 Prostate Cancer Biopsy

Prostate cancer is one of the most common forms
of cancer worldwide. The diagnosis of prostate
cancer often involves taking a biopsy and assign-
ing it a primary and a secondary Gleason grade.
The Gleason grade ranges from 1 (normal-looking)
to 5 (extremely irregular and carcinogenic). Pathol-
ogists learn how to grade biopsies through a book
with many illustrations of different grades [19],
as well as through practice. As a result, the
grading between pathologists is not always con-
sistent. As part of a recently funded NSF-NIH
planning grant, we are working on using persis-
tence diagrams and other topological descriptors
to quantify the information in prostate cancer
biopsy slides. For example, in Figure 5, we see
a gland and the corresponding persistence dia-
gram. The gland shown is a representative gland
of Gleason grade three, and illustrates the tele-
scoping glandular pattern (gland within gland).

5 Discussion

This paper highlighted a few high-level results
in topological data analysis, as well as to present
three examples demonstrating the breadth of TDA.
A more in-depth coverage of the ideas presented
here can be found in the references provided.
Research in TDA is currently rapidly expand-
ing, as illustrated by the fact that the field has

grown from a couple dozen to a couple hundred
researchers in just a few years. As the field con-
tinues to develop, it will be the close relation-
ship among computer scientists, mathematicians,
statisticians, and field experts that will drive the
research forward.
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