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Outside the world of mathematics it appears 
that math has remained a steady and 
consistent field since Newton and Leibniz 
discovered calculus in the 17th century.  After 
all, 2 x 2 always equals 4 and the slope of a 
vertical line is always undefined. So how can 
mathematics really transform? In this 
month’s highlight article, the January Postdoc 
of the Month Winner, Dr. Brittany Fasy, 
describes her work in the new mathematical 
field of Topical Data Analysis (TDA). TDA is a 
unique combination of algebraic topology 
and pure mathematics that allows for 
topological organization of large data sets to 
identify areas of persistence and thus, 
relevance. Applications of TDA range from 
identifying areas of high human traffic for 
strategic advertising, to characterizing the 
organization of the universe, to diagnosing 
cancer.  
 
Today the world is accumulating a 
gargantuan amount of data. The arrival of 
smart phones, integrated mobile GPS 
systems, and thousands of Apps gathering 
hundreds of thousands of data points per day 
equate to roughly 2.5 quintillion bytes of data 
collected per day. These so-called “Big Data” 
sets require a more efficient and effective 
method of analysis. Analyzing these Big Data 
sets is precisely why TDA was developed 
nearly 15 years ago. Large data sets can 
provide a seemingly endless supply of useful 
information, but understanding which 
relationships are meaningful and what 
information can be discarded is difficult to 
parse out when dealing with hundreds of 
millions of data points. In essence, the 
exciting and relevant data can get lost in the 
vast amount of noise.    
 

TDA, and specifically persistent homology 
TDA, uses topological signatures for a data 
set to identify which data features are the 
most significant. For the past four years Dr. 
Fasy has focused her research on the 
theoretical and practical applications of 
persistent homology. Persistent homology 
assumes that real and meaningful 
relationships will persist longer than noise, 
and thus isolates points for further analysis 
by identifying persistent homological 
features. The first step requires obtaining a 
large data set and simplifying it into a finite 
set of points on a plane. Using statistical 
methods developed by Dr. Fasy and 
colleagues (Fasy et al., 2014), these “points 
on a plane” are converted into functions and 
topological arrangements that correspond to 
a birth and death rate of a homological 
feature. A homological feature is a 
mathematical technique that distinguishes 
two shapes based on their connectivity and 
higher-order connectivity – e.g., the shape of 
a jelly filled doughnut is different from a 
glazed doughnut because the glazed 
doughnut has a hole in the middle of it. Now, 
over a defined interval of time these 
homological features can be born or die, or in 
other words they can appear or 
disappear/converge with other components, 
and this occurs on a 45-degree angle called 
the birth/death rate. The points 
(representing topological features) are then 
plotted. Points that are on or close to the 
birth/death rate not statistically significant 
and are likely topological noise, whereas 
points statistically distant from the line 
(having so-called long persistence intervals) 
are potentially relevant (Fasy et al., 2014).  
 
In her present article (Fasy 2016), Dr. Fasy 
summarizes the concepts of persistent
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homology and points to several real world 
applications for this mathematical tool. For 
example, physicians currently screen for 
prostate cancer through visual confirmation 
of abnormal or carcinogenic prostate tissue. 
As expected appropriate classification of 
prostate cancer from 1 (normal) to 5 
(extremely irregular and carcinogenic) can 
vary depending on the expertise of the 
physician. Use of a defined mathematical 
approach like TDA would standardize the 
prostate cancer grading system and perhaps 
allow for earlier and more accurate 
diagnoses.  
 
TDA is not the only mathematical approach 
to try and standardize our biomedical 
diagnoses systems using analysis of “Big 
Data.” Researchers at the Ohio State 
University are using the mathematical 
Wavelet-Chaos theory to detect and diagnose 
epilepsy by evaluating small perturbations in 
brain activity from a large data set of EEG 
recordings. Because EEG recordings of 
epileptic individuals can appear normal in 
the absence of a seizure (interictal EEG), 
doctors often require positive EEG 
recordings during a seizure (ictal EEG) or 
more invasive diagnostic tests including 
lumbar puncture or a sleep test to reach a 
diagnosis. Using the Wavelet-Chaos theory 
and multiple EEG recordings (i.e., millions of 
data points) from epileptic patients during 
interictal and ictal periods, researchers are 
able to train their mathematical formulas to 
detect small changes in an epileptic patient’s 
interictal EEG (Adeli et al., 2007). Using this 
mathematical formula, researchers could 
diagnose future epileptic patients based on a 
“normal,” interictal EEG allowing for early 
detection and rapid treatment. 
 
There is a note of caution when using 
mathematical models to summarize large 
data sets, however. The standardization 
required to map or evaluate patterns relies 

on inherent assumptions. In TDA persistent 
homology, mathematicians assume that 
relevant data will persist longer than 
topological noise. In the Wavelet-Chaos 
theory mathematic formula, the data set used 
to train the mathematical model uses pre-
established epileptic and non-epileptic 
patient EEGs which may or may not account 
for the extreme variability within the human 
population. Thus, some inherent error may 
be encoded into the formulas based on these 
assumptions that cause us to misinterpret the 
data or ignore other important relationships. 
Nonetheless, given the option of using a 
mathematical formula with assumptions 
established by well-respected and studied 
people in the field versus filing through 
hundreds of millions of raw data points 
looking for significant interactions and 
absolute conclusions, the mathematic models 
sound like the better option and most likely 
to succeed. It will be thrilling to see where Dr. 
Fasy and others in the field of persistent 
homology TDA take their mathematical 
models and how they will be applied to learn 
more about our universe and expand the 
human experience. 
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