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Abstract 
Imaging mass spectrometry (IMS) has emerged as a powerful analytical tool enabling the direct 
molecular mapping of many types of tissue. Specifically, matrix-assisted laser desorption/ ionization 
(MALDI) represents one of the most broadly applicable IMS technologies. In recent years, advances in 
solid state laser technology, mass spectrometry instrumentation, computer technology, and 
experimental methodology have produced IMS systems capable of unprecedented data acquisition 
speeds (>50 pixels/second). In applications of this technology, throughput is an important consideration 
when designing an IMS experiment. As IMS becomes more widely adopted, continual improvements in 
experimental setups will be important to address biologically and clinically relevant time scales. 
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Introduction 
Mass spectrometry (MS) has long been 
recognized for its high sensitivity, high 
throughput, and molecular specificity. Advances 
in MS instrumentation have enabled the use of 
MS technology as an imaging modality.1-2 
Specifically, matrix-assisted laser 
desorption/ionization imaging mass 
spectrometry (MALDI IMS), offers an untargeted 
approach to the regiospecific measurement of 
molecules in tissue specimens. The untargeted 
nature of this technology provides for the ability 
to simultaneously measure the complex array of 
molecular species present in biological tissue, 
producing molecular maps that can be correlated 
with anatomical tissue features without any 
required prior knowledge of the analytes present 
and without using any specialized reagents (e.g., 
antibodies). MALDI IMS analyses have been 
successfully applied to the study of eye 
physiology,3-7 neurology,8-9 skin cancer,10-11 
pancreatic cancer,12 and breast cancer.13-14 
 
In a typical MALDI IMS experiment, a thinly 
sectioned tissue specimen is mounted onto a flat 

target, such as a microscope slide, and then 
coated with a MALDI matrix (Figure 1). The 
MALDI matrix is typically a small organic 
molecule with strong absorbance at the 
wavelength of the MALDI laser and is applied to 
the sample in a manner that preserves the 
spatial integrities of the analytes of interest (e.g., 
metabolites, lipids, peptides, proteins). A raster 
of the tissue surface is performed, generating a 
mass spectrum at each x, y coordinate (i.e., a 
single pixel in ‘microprobe’ imaging mode).1, 15 
Ion intensity maps can be constructed as a 
function of x, y position across the tissue surface 
for any ion of interest. Ions can then be 
identified through one or a combination of 
several techniques, including exact mass 
measurements,16-17 on-tissue tandem mass 
spectrometry (MS/MS),18-23 or off-tissue liquid 
chromatography-tandem mass spectrometry (LC-
MS/MS).24 
 
Early MALDI IMS experiments required 1-2 
minutes/pixel for data acquisition, often 
requiring total analysis times of many hours or 
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even days.1 However, recent advances in laser 
technology,25-27 data acquisition, and scanning 
methodology18, 23, 28-29 have provided for mass 
spectrometry systems which are capable of 
scanning at speeds as high as 50 pixels/second. 
The increasing use of IMS technology in many 
biological and clinical applications necessitates 
that continuing improvements in experimental 
times be achieved in order to perform IMS 
investigations on reasonable time scales. 
 
Experimental 
Transverse and coronal rat brain (Pel-Freez 
Biologicals, Rogers, AR) specimens were 
cryosectioned at 10 µm and thaw-mounted onto 
indium-tin oxide (ITO) slides. A custom built 
sublimation apparatus was used to apply a 1,5-
diaminonapthalene (DAN, Sigma Aldrich, St. 
Louis, MO) matrix layer (110° C, 8 min, ~50 

mtorr).30-31 IMS experiments were performed on 
either a SimulTOF 300 Tandem MALDI tandem 
time of flight (TOF/TOF) MS (SimulTOF Systems, 
Sudbury, MA) in positive ion reflectron MS mode 
or a RapifleX MALDI Tissuetyper TOF MS (Bruker 
Daltonics, Billerica, MA) in negative ion 
reflectron mode. The SimulTOF instrument is 
equipped with a 349 nm, diode-pumped, 
frequency-tripled Nd:YLF laser capable of laser 
repetition rates up to 5 kHz. This system employs 
continuous laser raster sampling and was 
scanned using a 1 mm/second stage speed, 1 kHz 
laser frequency, and 50 hardware averaged shots 
per spectrum.23 The RapifleX instrument is 
equipped with a Smartbeam 3D 10 kHz 355 nm 
Nd:YAG laser and was set to 200 shots per pixel 
using a single shot laser configuration and 85% 
focus setting.24 
 

Figure 1. IMS workflow. a) Specimens are prepared for analysis by mounting thinly cut tissue sections 
onto slides. Matrix application is then performed via any number of methods prior to b) MALDI analysis. 
c) Mass spectra generated at each x, y position are then used to d) construct intensity map images for 
any single ion of interest. e) Analyte identification can be performed by one or a combination of several 
techniques.
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Results 
All analytical technologies experience trade-offs 
in various aspects of performance; as one 
particular characteristic is optimized, there are 
consequences that can affect the performance of 
other aspects of the technology. One such trade-
off in IMS is the interplay between the amount of 
area sampled and the time required for data 
acquisition. The total number of pixels in an IMS 
experiment is a function of both the spatial 
resolution of the image (i.e., defined by the pitch 
or spacing between each pixel) and the total 
imaged area. As area is a square function, the 
number of pixels required to sample larger and 
larger amounts of tissue at a defined spatial 
resolution increases rapidly. For example, a 1 cm 
by 1 cm area of tissue sampled at 100 µm spatial 
resolution requires 10,000 pixels to analyze the 
entire region, whereas a 5 cm by 5 cm area of 
tissue analyzed at the same spatial resolution 
requires 250,000 pixels. Similarly, as the spatial 
resolution of an experiment is adjusted to a finer 
setting, the experimental time also increases. An 
example of the consequences of throughput is 
shown in Figure 2 and Table 1. Assuming a 1.5 
cm diameter circular tissue section and a pixel 
acquisition speed of 1 pixel/second, a fairly 
common acquisition speed, the region of tissue 
that can be sampled in a reasonable 12 hour 
acquisition time decreases dramatically as the 
desired spatial resolution is altered (Figure 2). 
Similarly, the amount of time required to sample 
the entire tissue section using a 1 pixel/second 
acquisition speed at 5 µm spatial resolution can 
take over 81 days (Table 1)! Certainly, this 
acquisition time is not practical for most 
biological and clinical applications. However, at 

increased acquisition speeds, imaging the same 
area of tissue at finer spatial resolutions can 
again become practical. It is important to note 
that the acquisition times in Table 1 are reported 
for only a single tissue section; the effect on 
throughput is multiplicative when one considers 
the number of tissue sections in an experiment 
(e.g., normal versus disease state tissue 
comparisons), the number of technical 
replicates, and the number of biological 
replicates. 

 
Figure 2. A depiction of an IMS experiment 
showing that, given a defined circular tissue area 
(d=1.5 cm, represented by one cartoon brain 
image, images not shown to scale) and a 1 
pixel/second acquisition speed, the amount of 
tissue that can be sampled in 12 hours is 
dependent upon the spatial resolution of the 
experiment. Percentages indicate the 
approximate proportion of one brain section that 
can be measured at the indicated spatial 
resolution. 
 

Table 1. The number of pixels required to sample a defined circular tissue area is determined by the 
spatial resolution of the experiment. Depending on the type of IMS instrumentation utilized, acquisition 
speeds can vary and will have a dramatic influence on the total analysis time.
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New advances in MS instrumentation have 
provided for systems capable of imaging at well 
above single pixel/second acquisition speeds. 
One such system utilizes continuous laser raster 
sampling to acquire data while continually firing 
the laser and scanning the stage (SimulTOF 300 
Tandem).23 This is in contrast to more traditional 
scanning methods that move the stage in 
discrete steps under a stationary laser, pausing 
the stage to fire the laser before turning the laser 
off and moving to the next raster step. By using 
continuous raster sampling, a 39,073 pixel image 
of a coronal rat brain section sampled at 50 µm 
spatial resolution was acquired in approximately 
45 minutes (Figure 3). This corresponds to an 
acquisition rate of roughly 15 pixels/second. In 
this image, many brain substructures are clearly 
visible, including the corpus callosum, fornix, 
anterior commissure, and ventricles.32 It is also 

evident that various ions in the mass spectrum 
display quite different spatial localizations. For 
example, the ion at m/z 734 is localized primarily 
to the ventricles (Figure 3c) while the ion at m/z 
778 is primarily localized to the corpus callosum, 
fornix, and anterior commissure (Figure 3d). 
Given that this image was acquired in positive 
ion mode under sample conditions conducive to 
lipid ionization, these ions are likely forms of 
phosphatidylcholine ions, a class of 
glycerophospholipids that constitutes the major 
phospholipid present in most cellular 
membranes.33 While the identity of these two 
ions can be hypothesized based on the 
experimental polarity and the nominal mass of 
the peak, further rigor should be employed when 
assigning identities to ions from these types of 
experiments (vide infra).  
 
 
 
 
 

Figure 3. A 39,073 pixel MALDI image of a coronal rat brain section was sampled at 50 µm spatial 
resolution and was acquired in approximately 45 minutes. a) An average mass spectrum of 100 pixels 
shows the various lipid ions that were detected. b) A scanned optical image shows the tissue section 
following MALDI matrix application. Ion images of nominal masses c) m/z 734 and d) m/z 778 are 
plotted as m/z 734.6±0.6 and m/z 778.6±0.6, respectively, and show differential localization in brain 
substructures. 
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Another high-speed system employs a 10 kHz 
laser and moves the laser and the stage 
independently from one another, allowing the 
stage to be moved continuously while still 
acquiring discrete pixel spots (RapifleX 
Tissuetyper).24 Using this setup, a 644,134 pixel 
image of a transverse rat brain section sampled 
at 20 µm spatial resolution was acquired in 
approximately 345 minutes (Figure 4a). This 
corresponds to an acquisition rate of roughly 30 
pixels/second. At this fine spatial resolution, the 
gray and white matter regions of the cerebellum 

are clearly well resolved (Figure 4b). However, 
when conducting an IMS experiment, the user 
should not simply ask: “how high of a spatial 
resolution can I achieve?” Rather, the user 
should consider the experimental question for 
the biological or clinical task at hand and ask: 
“what spatial resolution is sufficient for this 
experiment?” By considering the level of image 
detail required and the area required to be 
imaged, the user can define a reasonable spatial 
resolution and analysis time. 
 

Figure 4. A 644,134 pixel MALDI image of a transverse rat brain section was sampled at 20 µm spatial 
resolution and was acquired in approximately 345 minutes. a) An ion image of nominal mass m/z 770 
depicts the entire brain. b) Ion images of nominal masses m/z 770, m/z 794, and m/z 885 are shown in 
an enlarged region of the cerebellum highlighted in (a) using the pink box and are plotted as m/z 
770.6±0.5, 794.7±0.5 and m/z 885.6±0.5, respectively, using root mean square (RMS) normalization. c) A 
hematoxylin and eosin stain of the tissue section is performed following MALDI IMS analysis. d) The 
enlarged region of the cerebellum is highlighted in (c) using the black box.
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Such considerations not only have implications 
on throughput, but also on other aspects of IMS 
performance. For example, as the number of 
pixels in an image increases, the data file size 
also increases.34-36 In some cases, file sizes can be 
well over a terabyte in size! Additionally, at 
smaller laser diameters required for high-spatial 
resolution analyses, sensitivity can become a 
concern.37-39 While the images shown here were 
acquired on high-speed TOF systems, other 
systems with slower acquisition speeds can be 
extremely important for high-quality IMS studies. 
As mentioned above, the ability to identify an ion 
of interest should not rely solely on the 
measured nominal mass of the ion. Exact mass 
measurements using high-mass accuracy, high-
resolving power mass spectrometers such as 
Fourier transform ion cyclotron resonance 
(FTICR) instruments, Orbitrap instruments, and 
quadrupole-TOF (Q-TOF) instruments can be 
used to identify the empirical formula of an ion 
of interest, facilitating analyte identification.16-17, 

40 For example, the ion of nominal m/z 885 in 
Figure 4b was determined to have an exact m/z 
of 885.550 by tissue profiling on a 15T FTICR MS 
(Bruker Daltonics, Billerica, MA) (data not 
shown). Searching this experimental exact mass 
through an online lipid database (LIPID MAPS, 
Lipidomics Gateway, www.lipidmaps.org) allows 
for the identification of this lipid with an 
accuracy of <1 ppm as a phosphatidylinositol, 
PI(38:4), a glycerophospholipid commonly found 
in brain tissue.41  While extremely powerful, 
high-resolving power instrument platforms are 
often the most expensive and have larger data 
file sizes. MS/MS enabled ion trap, TOF, and 
hybrid instruments18, 20-22, 40, 42-43 as well as ion 
mobility-mass spectrometry (IM-MS) 
instruments40, 44 can also be used to provide 
structural information to aid in identification. 
While not always the case, many of these 
instruments have IMS acquisition speeds closer 
to 1 pixel/second, making them much slower 
than the high-speed TOF systems detailed above. 
However, diminished throughput is countered by 
an increase in molecular specificity with these 
instruments, an extremely important aspect of 
any MS experiment. 

Conclusions 
As IMS workflows are extended to more and 
more applications, it will be imperative that 
experimental setups provide biologically or 
clinically relevant time scales. In addition to 
continuing advances in instrumentation, 
advances in data acquisition also provide 
promising avenues for increasing experimental 
throughput. Histology-directed MS profiling 
experiments, where MS data is only acquired 
from several small predefined regions of the 
tissue, allow for dramatic increases in 
throughput.45 Additionally, predictive imaging 
modalities that employ multivariate regression46 
or pan-sharpening algorithms47 can allow for the 
mathematical combination of multiple imaging 
datasets, allowing for poorer spatial resolution 
IMS experiments to be sharpened to finer 
resolution IMS experiments. This ‘image fusion’ 
approach can also be used to provide out-of-
sample ion distribution predictions for regions of 
unanalyzed tissue.46 Combined with high-speed 
MS instrumentation, these methods and 
bioinformatics tools will be vital to the 
widespread adoption of IMS technology. 
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