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Abstract	
In	 the	 recent	 years,	 novel	 regulatory	 functions	of	non-coding	RNAs	have	been	discovered.	Non-
coding	 RNAs	 (ncRNAs)	 are	 diverse	 classes	 of	 RNA	 molecules	 not	 translated	 into	 proteins	 that	
possess	 intricate	regulatory	and	structural	 functions.	The	human	genome	sequencing	performed	
by	the	International	Human	Genome	Sequencing	Consortium	revealed	that	only	20–25,000	genes	
are	 protein	 coding,	 corresponding	 to	 less	 than	 2%	 of	 the	 human	 genome	 (2004).	 Although	 the	
common	belief	 that	 the	 remaining	and	 larger	portion	of	 the	human	genome	was	not	 functional	
and	 considered	 as	 “junk	 DNA”,	 recent	 studies	 based	 on	 tiling	 arrays	 and	 RNA	 deep	 sequencing	
show	 thousands	 of	 RNA	 transcripts	 not	 derived	 from	 known	 genes	 and	 not	 encoding	 proteins	
(KAPRANOV	et	al.	2007	;	CARNINCI	et	al.	2005).	These	molecules	however	are	emerging	as	important	
and	 unexplored	 regulators	 of	 transcriptional,	 post-transcriptional,	 splicing	 and	 epigenetic	
processes.	 Among	 them,	 X	 chromosome	 inactivation	 (MEMILI	 et	 al.	 2001)	 or	 genomic	 imprinting	
(SLEUTELS	AND	BARLOW	2002).	 In	 this	 review,	 I	discuss	 recent	developments	 in	 the	 field	of	ncRNAs	
and	point	toward	a	better	understanding	of	how	ncRNAs	can	affect	aging	processes.		
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ncRNA	classifications	
	
They	 are	 diverse	 and	 range	 in	 size	 from	
around	 21-22	 nucleotides,	 such	 as	
microRNAs	(BARTEL	2009),	small	nuclear	RNAs	
and	 interfering	 RNAs	 (LAGOS-QUINTANA	 et	 al.	
2001),	to	more	than	10,000	nucleotides,	such	
as	 X-inactive	 specific	 transcript	 RNA	 (Xist).	
ncRNAs	 can	 be	 categorized	 into	 various	
classes	 based	 on	 their	 biogenesis,	 size,	 and	
biologic	function	(see	Table	1).	There	are	two	
main	groups:	housekeeping	non-coding	RNAs	
(1)	 and	 regulatory	 non-coding	 RNAs	 (2).	 1)	
Housekeeping	 ncRNAs	 include	 ribosomal,	
transfer,	 small	 nuclear,	 and	 small	 nucleolar	
RNAs,	 which	 are	 usually	 constitutively	
expressed.	 The	 short	 regulatory	 ncRNAs	
(<200	 nucleotides)	 include	 miRNAs,	 siRNAs,	
and	 piwi-associated	 RNAs	 (piRNAs).	 In	
addition,	 long	 regulatory	 non-coding	 RNA	
(lncRNAs)	 (200–100,000	 nucleotides)	
(GUTSCHNER	 AND	 DIEDERICHS	 2012;	 PONTING	 et	
al.	2009)	contribute	to	the	regulation	of	gene	
expression	 at	 various	 levels,	 including	
chromatin	 modification,	 transcription	 and	
post-transcriptional	processing.	
	
MicroRNAs	 (miRNAs)	 are	 the	 best	

characterized	class	of	short	ncRNAs	(19-24	nt),	
which	are	present	in	animals,	plants,	and	algae	
(BARTEL	 2009)	 (Table	 1).	 They	 are	 transcribed	
as	 long	 transcripts	by	RNA	polymerases	 II	and	
III	 and	 then	 processed	 by	 a	 microprocessor	
complex	(LEE	et	al.	2004;	BORCHERT	et	al.	2006).	
Following	export	to	the	cytoplasm	miRNAs	are	
cleaved	 by	 Dicer	 protein	 and	 are	 loaded	 into	
the	 RNA-inducible	 silencing	 complex	 (IBANEZ-
VENTOSO	 et	 al.	 2006;	 	 KIM	 et	 al.	 2009).	 These	
RNAs	regulate	the	expression	of	target	mRNAs	
at	 transcriptional	 (destabilizing	 target	mRNAs)	
and	 translational	 (blocking	 translation)	 level	
(BARTEL	2004;	DENLI	et	al.	2004).	While	in	plants	
such	 regulation	 occurs	 through	 perfect	 base-
pairing,	 usually	 in	 the	 3'	 untranslated	 region	
(HUI	 et	 al.	 2009)	 of	 the	 targeted	 mRNA,	 in	
mammals	 the	 base-pairing	 is	 only	 partial	
(LAGOS-QUINTANA	 et	 al.	 2001;	 LEE	 AND	 AMBROS	
2001).		
	
piRNAs	 are	 small	 RNAs	 associated	 to	 PIWI-
family	 proteins.	 piRNAs	 are	 produced	 by	 a	
long	RNA,	which	is	RNA	polymerase	II	(Pol	II)	
transcript.	 They	 are	 implicated	 in	 post-
transcriptional	 gene	 regulation	 (Table	 1),	
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they	also	provide	an	essential	protection	for	
germ-cell	 genomes	 against	 the	 activity	 of	
transposable	 elements	 (KAPRANOV	 et	 al.	
2007)	and	in	maintaining	genomic	integrity	in	
somatic	 and	 germ	 cells	 (OKAMURA	 AND	 LAI	
2008).	 They	 can	 play	 a	 significant	 role	 in	
protecting	 genomes	 against	 instability	 by	
repressing	 transposon	 activity	 via	 two	
important	mechanisms:	 transcriptional	 gene	
silencing	 (TGS)	 and	 post	 (PTGS)	 (SIOMI	 et	 al.	
2011;	 ROSS	 et	 al.	 2014).	 The	 piRNAs	 differ	
from	 the	 rest	 of	 the	 ncRNAs	 in	 2	 aspects.	
While	the	others	have	32	nt	 in	 length,	these	
are	 generated	 from	 single-stranded	 RNA	
precursors	 through	 a	 Dicer-independent	
mechanism.	 In	 addition,	 piRNAs	 associate	
with	 PIWI	 proteins	 are	 germline-specific	
members	 of	 the	 Argonaute	 protein	 family.	
However,	siRNAs	and	miRNAs	associate	with	
ubiquitously	 expressed	 AGO	 subfamily	
members	(VAGIN	et	al.	2006;	BRENNECKE	et	al.	
2007;	HOUWING	et	al.	2007).	
	
Small	 nucleolar	 RNAs	 (snoRNAs)	 are	 also	
small	non-coding	RNAs	(60-300	nt	length)		
(Table	 1).	 Recent	 discoveries	 have	 pointed	
out	 a	 wider	 regulatory	 function	 for	 these	
small	ncRNAs.	They	seem	to	be	related	with	
ribosomal	 RNA	 (rRNA)	 folding	 and	
stabilization.	 snoRNAs	 are	 normally	 located	
within	 introns	 of	 protein-coding	 genes	 and	
are	 transcribed	 by	 RNA	 polymerase	 II,	
although	 in	 some	 cases	 they	 can	 be	 found	
within	 introns	 of	 lncRNAs	 (SMITH	 AND	 STEITZ	
1997;	BORTOLIN	AND	KISS	1998).	
	
Long	 noncoding	 RNAs	 (lncRNAs)	 are	 longer	
than	 200	 nt	 and	 have	 been	 described	 as	
potent	 regulators	 of	 gene	 expression	 at	
different	 levels	 (Table	 1).	 lncRNAs	 are	 also	
RNAPII	 transcripts	 and	 regulate	 protein	
expression	 by	 numerous	 mechanisms	 (SILVA	
et	 al.	 2003).	 They	 participate	 in	 the	
modification	of	alternative	splicing	 (BARRY	 et	
al.	2014),	depletion	of	mRNA	through	decay	
mechanisms	 (GONG	 AND	 MAQUAT	 2011),	
depletion	of	endogenous	miRNAs	 (CESANA	 et	
al.	 2011)	 and	 also	 stabilization	 of	 mRNAs	
(FAGHIHI	et	al.	2008).	LncRNAs	can	also	play	a	
role	in	epigenetic	regulation	such	as	Xist	RNA	
(17	 kb;	 (MEMILI	 et	 al.	 2001))	 and	 Tsix	 RNA,	
antisense	Xist	RNA	 (40	kb;	 (LEE	AND	LU	1999)	

involved	 in	 X-chromosome	 inactivation	 in	
mammals.	 Several	 other	 lncRNAs	 are	
involved	 in	 genomic	 imprinting,	 such	 as	 Air	
(108	 kb;	 (SLEUTELS	 AND	 BARLOW	 2002),	
Kcnq1ot1	 (N60	 kb;	 the	 3ʹ-end	 is	 not	 fully	
known;	 (MANCINI-DINARDO	 et	 al.	 2006))	 and	
H19	(2.3	kb;	(CAI	AND	CULLEN	2007)	previously.		
	
Aging	
	
Changes	in	genome	affect	its	stability,	which	
can	 promote	 aging.	 Aging	 is	 known	 to	 be	
influenced	 by	 many	 environmental	 factors,	
but	 over	 the	 last	 years	 there	 are	 many	
studies	where	it	has	been	demonstrated	that	
genetic	 factors	 can	 also	 regulate	 aging.	 The	
molecular	mechanism	of	the	cellular	aging	is	
conserved	 across	 many	 species.	 There	 are	
many	molecular	pathways	that	are	related	to	
this	 process,	 such	 as	 insulin/insulin-like	
growth	 factor-1	 (IGF-1)	 signaling	 pathway	
(FRIEDMAN	 AND	 JOHNSON	 1988;	 KENYON	 et	 al.	
1993)	 or	 target	 of	 Rapamycin	 (GUTSCHNER	 et	
al.	 2014)	 signaling.	 Analyses	 of	 ncRNA	
functions	 have	 provided	 insights	 into	 how	
aging	mechanisms	are	regulated	at	different	
levels	 (cell,	 tissue	 and	 organism),	 yielding	 a	
better	 understanding	 between	 tumor	
suppression	 and	 the	 onset	 of	 aging-related	
diseases	 (SLACK	 2013).	 In	 this	 review,	 will	
focus	on	 the	 role	of	miRNAs	and	 lncRNAs	 in	
aging	process.		
	
miRNAs	and	aging	
	
The	 first	 miRNAs	 to	 be	 identified,	 lin-4	 and	
let-7,	 were	 described	 as	 regulators	 of	
developmental	 timing	 in	 the	 nematode	 (LEE	
et	 al.	 1993;	WIGHTMAN	 et	 al.	 1993;	 REINHART	
et	 al.	 2000).	 Since	 this	 discovery,	 by	
microarray	 and	 deep-sequencing	 analyses	
many	other	miRNAs	have	been	discovered	in	
the	 nematode	 (LAU	 et	 al.	 2001;	 REINHART	 et	
al.	 2000).	 It	 is	 known	 that	 the	 expression	
levels	 of	 miRNAs	 change	 over	 time	 (DE	
LENCASTRE	 et	 al.	 2010;	 IBANEZ-VENTOSO	 et	 al.	
2006;	 KATO	 et	 al.	 2011).	 However,	 the	
correlation	 between	 changes	 in	 miRNA	
expression	 and	 aging	 has	 not	 been	 well	
established.		
Specifically	 lin-4,	 miR-34,	 miR-71,	 miR-238	
and	miR-246	promote	longevity	(see	below).	
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The	miRNA	lin-4	regulates	the	protein	Lin-14,	
an	 essential	 transcription	 factor	 that	
modulates	 a	 variety	 of	 signaling	 pathways	
controlling	 developmental	 timing	 and	
lifespan.	 Animals	 carrying	 a	 deletion	
mutation	of	the	lin-4	miRNA	display	a	shorter	
lifespan,	 while	 its	 overexpression	 causes	 a	
longer	 lifespan	 (BOEHM	 AND	 SLACK	 2005;	
HRISTOVA	 et	 al.	 2005).	 The	 increase	 in	
longevity	 caused	 by	 up-regulation	 of	 lin-4	
appears	 to	 be	mediated	 by	 the	 insulin/	 IGF	
signaling	pathway.		
On	 the	 contrary,	 let-4	 and	 miR-239	
antagonizes	 longevity	 (DE	 LENCASTRE	 et	 al.	
2010;	 IBANEZ-VENTOSO	et	al.	2006;	KATO	et	al.	
2011;	 CHENG	 et	 al.	 2011).	 Additionally,	 a	
study	 of	 Drosophila	 body	 size	 showed	 that	
miR-8	(homologous	of	miR-200	in	humans)				
regulates	 insulin	 pathway	 being	 very	
important	 for	 controlling	 Drosophila	 and	
human	aging	 (HWANGBO	et	al.	2004;	HYUN	et	
al.	 2009).	 Other	 regulators	 of	 aging	 such	 as	
miR-17-92	 has	 also	 been	 described	 in	
mammals	 (GRILLARI	 AND	 GRILLARI-VOGLAUER	
2010).		
Currently,	 thousands	 of	 miRNAs	 have	 been	
identified	 in	 plants	 and	 animals,	 with	 over	
1400	 human	 miRNAs	 annotated	 in	 the	
miRBase	 (http://www.mirbase.org/)	
(KOZOMARA	 AND	 GRIFFITHS-JONES	 2011).	
Measurement	 of	 the	miRNA	 levels	 in	 blood	
and	 its	 correlation	 with	 the	 age	 of	 mice	 or	
humans	 (ZOVOILIS	 et	 al.	 2011),	 and	 also	 as	 a	
report	 of	 a	 single	 miRNA	 could	 function	 as	
marker	 for	 brain	 aging	 and	
neurodegeneration	(LI	et	al.	2011).		
However,	these	patterns	give	the	impression	
to	be	generally	 tissue-specific	 (HOLZENBERGER	
et	 al.	 2003).	 It	 should	 be	 ideal	 if	 the	
expression	 profile	 of	 these	 age-associated	
miRNAs	 could	 be	 used	 to	 predict	 future	
longevity	 (PINCUS	 et	 al.	 2011)	 instead	 of	 the	
conventional	 biomarkers	 of	 longevity	 (body	
size,	 movement	 rates	 and	 accumulation	 of	
age	pigments).	

	
	lncRNAs	and	aging	
	
Expression	of	many	 lncRNAs	also	changes	 in	
the	process	of	aging	as	global	rearrangement	
of	 transcriptional	 regulation	 follows	 with	
aging	(GUPTA	et	al.	2014).	A	few	years	ago,	a	

potential	role	of	some	lncRNAs	as	regulators	
of	 NF-κB	 pathway	 (skin	 aging	 and	
rejuvenation)	 was	 described	 (ADLER	 et	 al.	
2007).	NF-κB	 is	one	 transcription	 factor	 that	
controls	transcription	of	DNA	and	is	strongly	
associated	with	aging	(ADLER	et	al.	2007).	The	
pseudo	 gene	 lncRNA,	 lethe,	 is	 a	 negative	
feedback	 inhibitor	 of	 NF-κB	 signaling	
pathway	 (WANG	 AND	 CHANG	 2011).	 The	 age-
associated	 loss	of	Lethe	expression	could	be	
one	 of	 the	 causes	 for	 increased	 NF-κB	
activity	 in	 aging.	 Lethe	 is	 induced	 by	
proinflammatory	 cytokines	 via	 NF-κB	 or	
glucocorticoid	receptor	agonist,	and	then		
Lethe	 is	 recruited	 to	 the	 NF-κB	 effector	
subunit	RelA	to	inhibit	RelA	from	target	gene	
activation	(RAPICAVOLI	et	al.	2013).		
	
Furthermore,	a	number	of	novel	lncRNAs	are	
associated	 with	 replicative	 senescence.	
Senescence-associated	 lncRNAs	 (NA-SAL-
RNAs)	 and	 pseudogene-encoded	 lncRNAs	
(PE-SAL-RNAs)	 have	 recently	 been	
discovered,	 which	 have	 differential	
expression	 during	 senescence	 (ABDELMOHSEN	
et	 al.	 2013).	 Among	 them,	 silencing	 XLOC_	
025918	 and	 XLOC_	 025931	 led	 to	 lowered	
proliferation	 and	 increased	 chance	 of	
apoptosis.	 MALAT1	 is	 also	 known	 to	 have	
lower	expression	level	in	senescent	cells,	and	
silencing	MALAT1	 led	 to	 an	 increase	 in	 the	
number	 of	 senescent	 fibroblasts	
(ABDELMOHSEN	 et	 al.	 2013).	 All	 demonstrates	
that	 lncRNAs	 might	 have	 anti-ageing	 effect,	
but	 how	 such	 lncRNAs	 regulate	 gene	
expression	 in	 response	 to	 aging	 and	
senescence	 is	 not	 known	 (NIE	 et	 al.	 2012).	
Although,	 still	 much	 is	 left	 to	 realize	 the	
exact	 role	 of	 lncRNAs	 in	 aging	 and	 related	
diseases,	 during	 the	 last	 years	 a	 lot	 of	
evidences	 point	 to	 an	 important	 implication	
of	them	in	such	processes.	There	are	various	
groups	 of	 lncRNAs	 that	 directly	 or	 indirectly	
can	 be	 involved	 in	 the	 onset	 or	 progression	
of	 aging.	 Some	 of	 them	 are	 differentially	
expressed	 and	 involved	 in	 specific	
mechanisms,	such	as	chromatin	or	 telomere	
associated,	 p53	 induced	 or	 tumor	
suppressors.	 Eg,	 H19,	 HOTAIR	 or	 ANRIL	 are	
chromatin	 associated	 and	 they	 regulate	
development	 related	 genes	 and	 growth.	
TERRA	is	an	eg	of	lncRNAs	telomere		
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associated,	 increased	 levels	 are	 associated	
with	telomere	shortening,	and	then	cellular		
senescence	 and	 apoptosis.	 Eg,	 PANDA,	
lincRNA-p21,	 LINC-ROR	 are	 p53	 induced.	
Their	defective	expression	leads	to	apoptosis	
or	 growth	 arrest.	 And	 defects	 in	 the	MEG3,	
ANRASSF1	 or	 PTENpg1	 expression	 could	 be	
implicated	 in	 cellular	 senescence	 (ANGRAND	
et	 al.	 2015;	 GRAMMATIKAKIS	 et	 al.	 2014;	
KANDURI	2016;	QUINODOZ	AND	GUTTMAN	2014).	
	
Conclusions	
	
miRNAs	and	lncRNAs	have	appeared	as	main	
regulators	 of	 chromatin	 structure,	 gene	
expression,	 epigenetic	 regulation,	 RNA	
processing,	 protein	 synthesis,	 cell	 signaling	
and	 recruitment	 of	 various	 RNAs	 as	 well	 as	
proteins	 to	 DNA/RNA-protein	 complexes	
essential	 for	 numerous	 important	 cellular	
procedures.	Given	the	impact	of	aging	in	our	
life	 and	 in	 related	 diseases,	 there	 is	 an	
important	interest	in	clarifying	the	molecular	
mechanism	 and	 the	 regulators	 of	 aging	 in	
order	 to	 intervene	 therapeutically	 this	
process.	
	
As	 we	 gain	 a	 deeper	 understanding	 of	 the	
expression	 and	 function	 of	 ncRNAs,	 we	 can	
anticipate	 that	many	of	 these	ncRNAs	 could	
have	 clinical	 value	 in	 diagnosis	 and	 therapy.	
The	possibility	of	 their	detection	 in	blood	or	
fluids	 of	 our	 body,	 make	 these	 RNAs	
exceptionally	 nice-looking	 as	 diagnostic	 and	
possibly	also	prognostic	biomarkers.	
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