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Regulation of glycolysis in head and neck squamous cell carcinoma  
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Abstract Glycolysis is highly upregulated in head and neck squamous cell carcinoma (HNSCC). HNSCC 
glycolysis is an important contributor to disease progression and decreases sensitivity to radiation or 
chemotherapy. Despite therapeutic advances, the survival rates for HNSCC patients remain low. 
Understanding glycolysis regulation in HNSCC will facilitate the development of effective therapeutic 
strategies for this disease. In this review, we will evaluate the regulation of altered HNSCC glycolysis and 
possible therapeutic approaches by targeting glycolytic pathways.  
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Background 

Head and neck squamous cell carcinoma 
(HNSCC) is the most common type of head and 
neck cancer [1-3]. HNSCC is the 6th most 
common cancer worldwide with the incidence 
of 650,000 new cases every year [4]. It arises 
from the mucosal lining of the oral cavity, 
larynx, pharynx, oropharynx, hypopharynx, 
sinonasal tract and nasopharynx [1]. The major 
risk factors for HNSCC are tobacco and alcohol 
exposure [5-8], and human papilloma virus 
(HPV) infection [9-11]. These factors are 
associated with the HNSCC progression [7, 12].  

Cancer cells are dependent of several metabolic 
processes including glycolysis [13], 
mitochondrial oxidative phosphorylation 
(OXPHOS) [14], and glutaminolysis to fulfil their 
energy requirements [15]. Like most aggressive 
tumors, HNSCC exhibit a high rate of glycolysis 
to meet their metabolic demands [16, 17]. The 
outcome of the increased glycolysis in tumors 
can be visualized by (18F) fluoro-2-deoxy-D-
glucose (FDG) positron emission tomography 
(PET)/computed tomography (CT) (FGD-PET/CT) 
using a glucose analog, FDG as a tracer [18-20]. 
The high FDG uptake by the HNSCC tumors 
potentially correlates with the glucose uptake 
by the cells. Moreover, the molecular imaging 
studies of HNSCC using FDG-PET/CT imaging 
demonstrated the high glucose uptake and 
increased glycolysis in HNSCC [21-23].  

Glycolysis is a pathway that serves as the 
foundation for cellular metabolism [24, 25]. 
Glycolysis regulation in HNSCC is associated 

with the alteration in oncogenes, tumor 
suppressor genes, overexpression of glycolytic 
enzymes and glucose transporter. Under 
aerobic condition, cells produce only two 
adenosine triphosphates (ATPs) through 
glycolysis. Whereas, mitochondrial respiration 
can produces 36 ATPs by utilizing a product of 
glycolysis, pyruvate through OXPHOS. Under 
anaerobic conditions, pyruvate is reduced to 
lactate by an enzyme, lactate dehydrogenase A 
(LDH-A). Although, glycolysis generates less 
energy, ATP than OXPHOS, glycolysis is a major 
characteristic of cancer cell metabolism. 
Because of the weakened OXPHOS and less 
utilization of pyruvate, cancer cells produce less 
ATP through OXPHOS. In order to maintain a 
balance of energy, cancer cells aggressively 
perform glycolysis. The fast generation of 
energy during glycolysis promotes cell 
proliferation in rapidly growing cancer cells 
including HNSCC [13, 26, 27]. 

There are several steps involved in glycolysis to 
produce two molecules of pyruvate from one 
glucose molecule. Briefly, glucose first 
phosphorylates into glucose-6-phosphate by a 
catalytic enzyme, hexokinase. Next, glucose 6-
phosphate converts into fructose 6-phosphate, 
fructose 6-phosphate converts into fructose 
1,6-bisphosphate and finally it produces 
pyruvate as a end product of glycolysis [28]. In 
cancer cells, the elevated LDH-A catalyzes most 
of the pyruvates into lactate. The intracellular 
accumulation of lactate is extremely harmful as 
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the abundance of lactate drastically lowers 
intracellular pH. Consequently, the export of 
lactate by lactate transporters 
(Monocarboxylate transport proteins (MCTs)) 
into the extracellular space is extremely 
important for the cancer cells to main their 
intracellular pH. 

The purpose of this review is to highlight the 
current studies of HNSCC glycolysis and possible 
therapeutic interventions.  

Regulation of HNSCC glycolysis 

In 1927, Otto Warburg demonstrated that 
human tumor cells preferentially utilize 
glycolysis to generate energy  using in vivo and 
in vitro models [29]. Warburg demonstrated 
that although mitochondrial respiration 
produces more ATP, tumors unlike normal cells, 
preferentially engage in glycolysis even in the 
presence of oxygen. Later, this phenomenon 
came to be known as the Warburg effect or 
aerobic glycolysis [30]. Increased aerobic 
glycolysis in cancer cells favorably accumulates 
lactic acid in tumor microenvironment. The 
accumulation of high amount of lactic acid 
tumor microenvironment is associated with 
metastatic spread and radioresistance in HNSCC 
[31, 32].  

The underlying mechanisms involved in the 
preferential use of glycolysis by cancer cells 
include mitochondrial defects, adaptation to 
hypoxic tumor microenvironments, oncogenic 
signaling and abnormal expression of metabolic 
enzymes [33]. Several studies have 
demonstrated that altered glycolysis in HNSCC 
is associated with the activation of hypoxia-
inducible factor-1 (HIF-1), transketolase-like 
protein 1 (TKTL1), mutations in tumor 
suppressor gene, p53, as well as overexpression 
of the glucose transporters-1 (GLUT-1), and the 
glycolytic enzymes, Hexokinase-II (HK-II), lactate 

dehydrogenase A (LDH-A) and  
monocarboxylate transport proteins (MCTs) 
(Figure 1) [13, 34-38]. In the next section, we 
will discuss the role of each of these molecules 
in HNSCC pathogenesis.  

Hypoxia-inducible factor-1  

Hypoxia-inducible factor-1 (HIF-1) is a 
transcription factor, which reprograms and 
regulates cancer cell metabolism including 
aerobic/anaerobic glycolysis and lactate 
production [39, 40]. HIF-1 is a heterodimer 
consisting of a highly regulated HIF-1α subunit 
and a constitutively expressed HIF-1β subunit 
[41-43]. A high level of HIF-1α protein is 
common in many types of solid tumors 
including head and neck [44-47]. Recently, it has 
been reported that HIF-1α complex binds 
hypoxia response elements in the promoter 
region of target genes, which include enzymes 
involved in glycolysis and pH regulation, such as 
phosphoglycerate kinase [48], carbonic 
anhydrase CA9 [49] , hexokinase [50], lactate 
dehydrogenase [51] and  glucose transporters, 
GLUT-1 and GLUT-3 [41, 52-54].  

HIF-1 increases the rate of glucose uptake in 
cancer cells through the induction of glucose 
transporters and further induces glucose 
phosphorylation by increasing HK-II activity 
[50]. HIF-1 can regulate complete glycolysis 
pathway by increasing the amounts of the 
enzymes (e.g. HK-II, LDH-A and phospho 
fructokinase1 (PFK1)) involved in this process 
[55]. Seagroves et al. (2001) reported that most 
of the enzymes necessary for glycolysis in 
mammalian cells are regulated by HIF-1 [56]. 
Moreover, the overexpression of HIF-1 
promotes the expression of glycolytic enzymes, 
which favors the use of glucose in glycolysis and 
lactate export into extracellular space.   

Transketolase-like protein 1 
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Figure 1: Regulation of HNSCC glycolysis. HNSCC tumors are more dependent on glycolysis. This model represents 
the regulation of glycolysis in HNSCC. Mutation in p53 activates HIF-1α, which regulates GLUT-1, HK-II and LDH-A 
expression in HNSCC. The overexpression of TKTL1 in HNSCC increases lactate production by increasing fructose-6-
phosphate and glyceraldehyde-3-phosphate activity. Overexpression of MCTs export lactate out from the cells to 
protect cell damage as of the high accumulation of lactate decreases pH in intracellular environment. 

Transketolase-like protein 1 (TKTL1) is a 
heterodimer protein belonging to the 
transketolase family [57]. The overexpression of 
TKTL1 is associated with the cell growth, 
glucose consumption and lactate production in 
many cancer cells and is considered as a 
potential proto-oncogene [58-61]. In 2009, 
Smith and coworkers reported that the TKTL1 
induced aerobic glycolytic phenotype in head 
and neck and lung cancer by increasing 
fructose-6-phosphate and glyceraldehyde-3-
phosphate [61]. Moreover, the overexpression 
of TKTL1 is strongly correlated with tumor 
progression in colorectal cancer [62]. The 
function of TKTL1 is not very well understood in 

HNSCC. Recently, Grimm et al. (2014) 
demonstrated that the overexpression of TKTL1 
is negatively correlated with the survival of 
patients with OSCC [63]. In 2010, Sun et al. 
reported the overexpression of TKTL1 in HNSCC 
tumors compared to normal mucosa [64]. 
Moreover, the overexpression of TKTL1 in 
HNSCC cells promoted cellular proliferation in 
vitro and tumor growth in vivo [64]. The 
overexpression of TKTL1 increased the 
production of fructose-6-phosphate and 
glyceraldehyde-3-phosphate, and further 
increased lactate production by stabilizing 
HIF1α (Figure 1) [64].  
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p53 

p53 is a tumor suppressor gene, which is highly 
mutated in human cancers [65]. The p53 
signaling pathway is activated in response to a 
variety of stress signals, allowing p53 to 
coordinate transcription programs that 
ultimately contribute to tumor suppression 
[66].  p53 also regulates cellular metabolism by 
regulating glycolysis and OXPHOS steps via 
transcriptional regulation of its downstream 
genes TP53-induced glycolysis regulator (TIGAR) 
[67]. Loss or gain of function, through 
mutations in p53 (Mut-p53) is a common 
feature in the majority of human cancers [68, 
69]. Recently, it has been reported that the 
gain-of-function in p53 mediates metabolic 
changes in tumors and promotes tumor growth 
[70]. Zhang et al. (2013) demonstrated that 
Mut-p53, gain of function promoted glycolysis 
and Warburg effect in several cancers by 
increasing GLUT-1 expression through activating 
RhoA/ROCK signaling pathway in both in vitro 
and in vivo models [71]. Moreover, the Mut-p53 
was reported to induce the expression of 
glycolytic enzyme, HK-II, which promoted 
glycolysis in rats [72]. Although, mutations in 
p53 is a key factor in the regulation of cancer 
cell metabolism, the inactivation of p53 in HPV 
positive HNSCC indicates an alternative 
mechanisms of HNSCC metabolic regulation 
[73-75]. Currently, the roles of Mut-p53 in 
regulation of tumor metabolism remain 
unclear. Whereas, some studies have 
demonstrated that glycolytic inhibition 
potentiates radiation toxicity in Mut-p53, but 
not in WT-p53 expressing HNSCC cells [68, 76].  

Glucose transporter-1 

Glucose transporter-1 (GLUT-1) encoded by a 
gene called SLC2A1, which mediates the cellular 
uptake of glucose into many tissues, and 
maintains glucose concentration in blood [77-
79]. Overexpression of GLUT-1 was reported in 
several cancers including head and neck [80-
82]. In 2008, Li et al. reported the 
overexpression of GLUT-1 in primary and 
recurrent HNSCC tumors with the high 

accumulation of FDG [83], which correlates with 
the high glucose uptake and poor patients 
survival. These findings indicate that the 
overexpression of GLUT-1 in HNSCC is 
associated with glucose uptake.  

Hexokinase-II 

Hexokinase-II (HK-II) is a glycolytic enzyme, 
which phosphorylates glucose into glucose-6-
phosphate in many tissues including muscle and 
adipose [84, 85]. HK-II is one of the rate-limiting 
enzymes of glycolysis [13], which is highly 
upregulated in many cancers including HNSCC 
[63, 86-88]. Recently, Chen et al. (2014) 
reported the overexpression of HK-II in 
laryngeal squamous cell carcinoma (LSCC) cells 
and the effect of HK-II expression in tumor 
progression. HK-II knocked down by HK-II 
shRNA in laryngeal cell carcinoma, Hep-2, 
decreased cell viability and increased apoptosis 
by arresting G0-G1 phase of cell cycle. 
Moreover, the depletion of HK-II resulted in 
reduced xenograft tumor [89]. These findings 
suggest that the HK-II expression in HNSCC 
plays an important role in the tumor 
progression by upregulating tumor glycolysis.  

Lactate dehydrogenase A  

The lactate dehydrogenase A (LDH-A) is an 
enzyme, which is highly upregulated in cancer 
cells. LDH-A catalyzes the last step of anaerobic 
glycolysis, converts pyruvate into lactate during 
glycolysis [90, 91]. There are five active LDH 
isoenzymes in human tissue, each of which is a 
tetrametric metabolic enzyme composed of two 
major subunits, A and B, encoded by Ldh-
A and Ldh-B genes, respectively. When there 
are more A chains than B chains, the LDH 
isoenzymes become more efficient in catalyzing 
the conversion of pyruvate into lactate; 
conversely, an excess of B chains favors the 
conversion of pyruvate into acetyl-CoA. The 
dependence of tumor cells on LDH-A has been 
demonstrated in many cancer types including 
OSCC [63, 92]. During the conversion of 
pyruvate into lactate, nicotinamide adenine 
dinucleotide (NADH) reduced to NAD+ ion, 
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which required to drive glycolysis in cancer 
cells. LDH-A is a key enzyme involved in the 
Warburg effect and in sustaining cancer’s 
glycolytic phenotype [93]. Recently, Blatt et al., 
(2016) demonstrated that the high lactate levels 
in HNSCC tumors are significantly negatively 
correlated with patient survival [94].  

Monocarboxylate transports 

Most solid tumors are highly glycolytic, which 
produce significant amount of lactic acid in 
extracellular environment, contributing to the 
acidic tumor microenvironment [95]. In this 
condition, monocarboxylate transports (MCTs) 
play an important role in the maintenance of 
the lactate shuttle, and pH regulation in highly 
glycolytic solid tumors [96]. MCTs are 
transmembrane proteins that facilitate the 
transport of variety of substrates such as 
pyruvate and lactate [97]. The overexpression 
of monocarboxylate transports (MCT1 and 
MCT4) have been reported in several cancers 
including head and neck cancer and is 
associated with the poor prognosis [27, 96, 98-
100]. The regulation of MCT1 and MCT4 
depends on the specific cell types and their 
function [101]. Several studies have 
demonstrated that MCT1 works as a lactate 
bidirectional transporter, whereas MCT4 only 
effluxes lactate from the cells [102, 103]. In 
solid tumors, cancer cells could also import 
lactate through MCT1 from the most glycolytic 
tumor cells [103, 104] or tumor-associated 
fibroblasts to fuel mitochondrial respiration and 
thereby spare glucose for hypoxic tumor cells 
[105, 106]. In 2011, Boidot et al. demonstrated 
that loss of p53 in hypoxia condition induces 
MCT1 expression and increases lactate shuttle 
in elevated glycolytic tumors [107]. As discussed 
above, the intracellular accumulation of lactate 
is tremendously harmful for the cancer cells in 
highly glycolytic solid tumor. Thus, the export of 
lactate into the extracellular space through 
MCTs is extremely necessary for the survival of 
cancer cells. Therefore, targeting MCTs in highly 
glycolytic HNSCC tumors could be a potential 
therapeutic approach to control tumor growth 
[95, 108, 109].  

Therapeutic approaches for HNSCC by 
targeting glycolytic pathways  

Despite development of several metabolic 
inhibitors, not many studies have been reported 
to target glycolytic pathway in HNSCC. As HK-II 
phosphorylates glucose to glucose-6-
phosphate, most of the glycolysis inhibitors 
were designed to target HK-II. lonidamine,  2-
deoxy-D-glucose (2-DG) and 3-bromopyruvate 
(3-BP) are the most commonly tested HK-II 
inhibitors being used in both pre-clinical and 
clinical model either alone or in combination 
with chemotherapy and radiation therapy [33, 
110-114]. Simons et al., (2007) demonstrated 
that 2-DG potentiates cisplatin cytotoxicity in 
HNSCC xenografts model [111, 112]. In cancer 
cells, glucose deprivation as well as treatment 
with 2-DG has been shown to induce oxidative 
stress and sensitivity to radiation and 
chemotherapy [115-118]. In 2008, Ihrlund et al. 
demonstrated that 3-BP enhanced cisplatin 
cytotoxicity in pre-clinical setting [119]. Other 
clinical studies demonstrated that the 
combination of lonidamine to either radiation 
therapy or chemotherapy improved clinical 
outcomes in HNSCC patients [120, 121].  

As GLUT-1 increases glucose uptake in HNSCC 
and potentiates glycolysis, it is important to 
target GLUT-1 to inhibit glycolysis. Most 
recently, Wang et al. (2013) demonstrated that 
the inhibition of GLUT-1 activity and expression 
can sensitize HNSCC cells to cisplatin treatment 
in both in vitro and in vivo models. They 
demonstrated that glucose uptake was reduced 
in HNSCC cells by knocking down GLUT-1 with 
shRNA or blocking GLUT-1 by anti-GLUT-1 
antibody. Both anti-GLUT-1 antibody and GLUT-
1-shRNA sensitized HNSCC cells to cisplatin 
treatment under both normoxia and hypoxia 
conditions [122]. Another study by Li et al. 
(2013) demonstrated that the inhibition of 
GLUT-1 in HNSCC significantly inhibited cell 
viability and colony formation. Further, GLUT-1 
inhibition reduced tumor growth in xenograft 
model [123]. In addition to HK-II and GLUT-1, 
HIF-1α, p53, TKTL1, LDH-A and MCTs can also 
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be targeted to inhibit glycolytic pathway in 
HNSCC. 

Conclusion  

In this review, we discussed the role of HIF-1, 
TKTL1, p53, GLUT-1, HK-II, LDH-A and MCTs in 
HNSCC metabolism. In general, expression of 
these factors was associated with poor survival, 
and resistance to radiation and 
chemotherapeutic agents in HNSCC. The effect 
of these markers in HNSCC glycolysis is not very 
well investigated. Therefore, the detailed study 
and evaluation of these factors in HNSCC 
glycolysis may provide clues for the best 
treatment option for HNSCC patients with radio 
or chemo resistance.  
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