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Abstract Cancer cell-derived exosomes have recently been implicated in contributing to metastasis. It is 
expectable that specific membrane trafficking factors would participate in the regulation of exosome 
formation, transport and release from cells. Recent investigations have revealed certain members 
belonging to the SNARE, sorting factor and Rab GTPase protein families as being crucial in governing the 
exosome life cycle. These trafficking components have therefore been primed as new targets potentially 
modulating cancer progression. This mini-review is focused on the involvement of membrane trafficking 
components in regulating exosome-related transport and signaling, and in turn influencing clinical 
outcomes in cancer. 
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Introduction 
Multicellular organisms rely on intercellular 
communication for information exchange in 
order to execute appropriate development and 
functioning of tissues, and promote survival. 
This communication occurs either through 
direct physical contact via nanotubes [1], 
secreted chemical signals like cytokines, 
chemokines and metabolites [2], or via 
exosomes [3]. 
 
Exosomes are membrane-bound nanovesicles 
(40 - 100 nm in diameter) released from various 
cell types into the extracellular space [4]. They 
are present in almost all biological fluids 
including blood, lymph, urine, saliva, 
cerebrospinal fluid, breast milk and semen. 
Lipids and proteins are the main components of 
exosome membranes, which are enriched with 
lipid rafts [5]. In addition to proteins, various 
nucleic acids have recently been identified in 
the exosomal lumen, including mRNAs, 
microRNAs (miRNAs), and other non-coding 
RNAs (ncRNAs) [6]. Under normal physiological 
conditions, exosomes have been primarily 
tasked with the removal of unnecessary 
proteins from cells [7]. They can be thought of 
as intercellular communicasomes by 
transferring signals to their target cell via 
surface ligands, and delivering receptors and 

functional molecules. Exosomes appear to be 
intended for sustaining normal cellular 
metabolism even under unfavorable conditions 
such as starvation and oxidative stress [8]. Their 
complete functional relevance in normal as well 
as disease physiology is still under investigation.  
Accumulating evidence indicates that exosomes 
play important roles in cancer progression [9] 
by contributing to the escape from immune 
surveillance and the formation of tumor niche. 
The majority of deaths from cancer are 
attributed to metastasis. Metastasis consists of 
a series of successive and interrelated steps 
mainly including invasion of malignant cells into 
surrounding tissue, intravasation, circulation, 
adhesion to and extravasation from capillaries 
into target organs [10]. Studies have shown a 
significant difference in total exosome and 
exosomal miRNA between cancer patients and 
healthy control individuals, and a similarity 
between the circulating exosomal miRNA and 
the tumor-derived miRNA patterns [11]. This 
suggests that the exosome might be useful as a 
screening test for various cancer types. These 
exosomes transfer oncogenic proteins and 
nucleic acids, especially microRNAs, to
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modulate the behavior of neighboring or distant 
recipient cells and play decisive roles in 
malignant transformation, growth, metastasis, 
and drug resistance. 
 
In this mini-review, the role of membrane 
trafficking components in the regulation of 
exosome release from cancer cells, and its 
potential influence on clinical outcomes is 
discussed. Membrane fusion events underlie 
crucial physiological functions such as synaptic 
transmission and endocrine secretion involving 
vesicle fusion with the plasma membrane and 
subsequent release of neurotransmitter/ 
hormone, as well as organelle maturation 
associated with immune responses, apoptosis 
and cell division. Soluble N-ethylmaleimide 
sensitive factor Attachment Protein Receptors 
(SNAREs) are central players mediating 
membrane fusion reactions. Tethering factors 
and Rab GTPases are the other typically 
essential factors regulating cargo sorting and 
fidelity of membrane fusion events within the 
cell. 
 
Discussion 
Exosome biogenesis, transport and release is 
thought to be precisely regulated by several 
proteins, including SNAREs, tethering 
complexes and rab GTPases. Ykt6, belonging to 
the longin family of R-SNAREs, has been known 
to be involved in vesicular transport between 
secretory compartments such as in the 
endoplasmic reticulum-Golgi step, within early/ 
recycling endosomes, in endocytic trafficking to 
the lysosome, and in autophagocytosis [12-14]. 
Over the last seven years, there is emerging 
evidence from multiple model systems on Ykt6 
being implicated in exosome release [15-17]. 
For instance, Ykt6 was identified as a key 
molecule, and arguably the only member of the 
SNARE family, functioning in the release of 
Wnt3a-containing exosomes from HEK293 cells 
[15]. A microarray analysis of invasive 
phenotypes in a breast cancer model revealed 
that Ykt6 overexpression was associated with (i) 
an aggressive phenotype in an in vitro local 
invasion assay and (ii) a metastatic phenotype 

in an in vivo tumorigenesis assay [16]. 
Interestingly, in breast cancer patient samples, 
Ykt6 was found to be upregulated in p53-
mutant tumors that were resistant to 
Docetaxel, suggesting that elevated Ykt6 levels 
might contribute to taxane therapy resistance 
[17]. This hypothesis is reinforced by the finding 
that Docetaxel-induced apoptosis was 
enhanced by the in vitro silencing of Ykt6 [17]. 
In the non-small cell lung cancer (NSCLC) cell 
line A549, siRNA-mediated knockdown of Ykt6 
produced a remarkable downregulation in the 
level of secreted exosomes [18]. Moreover, the 
same study also reported that NSCLC patients 
with high levels of Ykt6 protein expression had 
shorter overall survival (OS) and progression-
free survival (PFS). In this small subset of 
patients, those with higher Ykt6 expression had 
significantly more exosomes in blood plasma 
compared to those with lower Ykt6 levels. 
These preliminary results provide the first 
indication that Ykt6 levels in the tumor may act 
as a surrogate for exosome levels in the plasma 
and thus could serve as a biomarker for NSCLC 
prognosis.  
 
Gross et al. have demonstrated, through 
elegant biochemical and genetic approaches in 
Drosophila, that a portion of functional Wnts 
(Wg is the Drosophila Wnt1 homolog) is 
secreted on exosomes both ex vivo and in vivo 
[15]. To systematically identify proteins 
involved in secretion of Wnts on exosomes, the 
authors carried out an in vivo RNA interference 
(RNAi) screen of exosome-associated proteins 
in Drosophila. Depletion of Ykt6 by RNAi 
showed accumulation of Wg and other 
exosomal markers inside the producing cells. In 
addition, depletion of Ykt6 in Wg-producing 
cells reduced the expression of the Wg target 
gene senseless in the neighboring target cells 
when compared with control, consistent with a 
defect in Wg signaling. Strikingly, knockdown of 
Ykt6 did not impair other transport pathways or 
secretion through non-exosomal routes that it 
is involved in. Their results strongly indicate the 
selective requirement of Ykt6 not only in Wg 
secretion but also in Wg signaling in target cells.
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One of the mechanisms of segregation of 
exosomal proteins into intraluminal vesicles 
(ILVs) in multi-vesicular bodies (MVBs) involves 
recognition of cargo receptors by the ESCRT 
(endosomal sorting complex required for 
transport) machinery which acts as a 
multisubunit tethering factor [19]. RNAi-
mediated depletion of the ESCRT subunit HGS in 
HEK293 cells reduced the level of Wnt3A in the 
exosomal fraction and reduced Wnt activity in 
the supernatant by 40% as compared with 
control [15, 20]. This study proposed that an 
ESCRT-mediated sorting step is required for 
Wnt complex trafficking into MVBs. It remains 
to be seen whether interfering with other cargo 
recruitment components can affect cargo 
incorporation into exosomes and subsequent 
signaling, which would be of tremendous 
potential in designing newer anti-cancer 
therapies to combat metastasis and drug 
resistance. There is increasing interest in 
exploring the identity of microRNAs captured 
within exosomes and their corresponding 
recruitment protein complexes, due to their 
potential to be developed as therapeutic 
targets. MicroRNA-223 (miR-223) has been 
found to be commonly repressed in various 
cancers [21, 22] and is selectively enriched in 
the exosome fraction relative to cellular levels 
[23]. While identifying proteins that are directly 
involved in packaging miR-223 in exosomes, 
Shurtleff et al. [23] demonstrated that the Y-box 
protein I (YBX1) co-precipitated with miR-223 
isolated from a cell-free reaction. The authors 
concluded that the RNA-binding protein YBX1 
binds to and is required for the sorting of miR-
223 in exosomes in the cell-free reaction, and 
serves an important role in the secretion of 
miRNAs in exosomes by HEK293T cells. 
 
An independent study performed on A549 cells 
described the involvement of Rab27A in 
exosome secretion [24]. In this study, the 
reduction of Rab27A by Rab27A-specific shRNA 
was reported to significantly decrease the 
secretion of exosomes from A549 cells. The 
authors also found that EPI64, acting as a 
specific GTPase Activating Protein (GAP) for 

Rab27A and not Rab27B, participated in 
exosome secretion from A549 cells. 
Overexpression of EPI64 was found to enhance 
exosome secretion. In general, Rabs function as 
molecular switches by cycling between two 
nucleotide bound states: a GTP-bound active 
state and a GDP-bound inactive state. Activated 
Rabs promote various steps in membrane 
trafficking. Further studies might employ 
Rab27A as a molecular switch to control 
exosome secretion and force this exosome 
secretion in a direction that benefits human 
health. Furthermore, inhibition of Rab35 and its 
GAPs TBC1D10A-C, has been shown to block 
exosome secretion in a cell-type-dependent 
manner [25]. High levels of Rab27B, possibly 
contributing to higher exosome release and in 
turn increasing the likelihood of generating 
malignant transformation in exosome recipient 
or target cells, have been linked to poorer 
prognosis in liver, bladder and pancreatic 
cancer [26-28]. However, there is conflicting 
evidence regarding the correlation between 
Rab27B expression levels and its prognostic 
value in colorectal cancer [29, 30] and further 
studies would be required to resolve this and 
associated conundrums. 
 
Conclusion 
Along with regulating the well-characterized 
membrane transport pathways, many of the 
evolutionarily conserved trafficking factors 
belonging to the SNARE, tethering complex and 
Rab GTPase families have also recently been 
implicated in the control of exosome biogenesis 
and secretion. Further studies identifying 
coding and non-coding genes involved in the 
regulation of exosomal transport would be 
necessary to understand their utility in 
determining cancer diagnosis and prognosis. 
Identifying and targeting genes encoding 
membrane trafficking components may be a 
more simplistic yet comprehensive anti-cancer 
therapeutic strategy, in comparison to a similar 
process for a potentially much larger 
abundance and diversity of exosomal 
oncogenes/ oncoproteins. Increasing 
knowledge of the protein and lipid
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compositions of exosomes in addition to their 
resilient physicochemical properties will 
facilitate engineering or manipulating these 
extracellular vesicles as nanodevices for the 
development of new diagnostic and therapeutic 
applications. Before protein, lipid and nucleic 
acid components from exosomal origin may be 
employed as diagnostic agents not only in the 
context of cancer but also cardiovascular and 

neurodegenerative disorders, many challenges 
need to be addressed. These include isolating 
highly pure exosome extracts, understanding 
exosome biogenesis and function in cell-cell 
communication, designing well-controlled 
clinical trials, obtaining large multicenter 
validation of biomarkers and standardizing data 
interpretation. 
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