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Abstract	
Translesion	 synthesis	 (TLS)	 is	 an	 important	 mechanism	 where	 a	 group	 of	 polymerases	 come	
together	 to	 orchestrate	 the	 bypass	 of	 aberrant	 DNA	 lesions.	 This	 process	 enables	 survival	 of	
those	 cells,	which	would	 have	 otherwise	 been	 committed	 to	 die	 because	 of	 these	 difficult	 to	
repair	 DNA	 lesions.	 Interestingly,	 siRNA	 knockdown	 of	 TLS	 polymerases	 in	 cancer	 cells	 was	
shown	to	sensitize	cells	to	increased	killing	and	reduced	mutagenesis	following	treatment	with	
chemotherapeutic	 drugs,	 which	 suggests	 an	 important	 role	 of	 TLS	 polymerases	 in	
chemoresistance	 and	 cancer	 relapse.	 Recent	 investigations	 showed	 that	 small	 molecule	
inhibitors	(SMi)	that	specifically	bind	REV1	TLS	polymerases	and	suppressed	its	protein-protein	
interactions	with	 other	 TLS	 polymerases,	 also	 successfully	 sensitized	 cancer	 cells	 to	 enhanced	
killing	 and	 reduced	mutagenesis.	 As	 such,	 the	possibility	 of	 a	 SMi	 that	 specifically	 binds	REV1	
and	 inhibits	 TLS,	 will	 serve	 as	 a	 chemotherapy	 adjuvant	 and	 prevent	 chemoresistance	 and	
cancer	 relapse	 is	 now	 a	 promising	 possibility.	 In	 this	 mini-review,	 we	 will	 provide	 a	 brief	
discourse	 of	 the	 overarching	 importance	 of	 TLS	 polymerases	 in	 normal	 and	 cancer	 cells	 and	
describe	characteristics	of	current	and	future	TLS	inhibitors	that	will	potentially	serve	as	clinical	
chemotherapeutic	adjuvants.	
Key	words:	Translesion	synthesis	(TLS),	TLS	polymerases,	Small	molecule	inhibitors	(SMi),	
chemoresistance,	cancer.	
	

Translesion	 synthesis	 (TLS):	 the	 DNA	
damage	bypass	process	
	
TLS	 is	 a	 highly	 conserved	 DNA	 damage	
bypass	 process	 whereby	 a	 group	 of	
specialized	DNA	polymerases	 replicate	past	
aberrant	 DNA	 lesions.	 The	 translesion	
synthesis	 process	 is	 either	 error	 prone	 or	
error	 free	 depending	 upon	 whether	 an	
incorrect	 or	 a	 correct	 nucleotide	 was	
inserted	 across	 the	 damage.	 Both	 the	
structural	attributes	of	TLS	polymerases	and	
the	context	of	the	DNA	damage	determines	
the	choice	of	the	nucleotide	that	is	inserted	
across	the	damage	[1,	2].	The	consequence	
of	an	incorrectly	 inserted	nucleotide	by	the	
TLS	 machinery	 is	 the	 introduction	 of	
mutation	 in	 the	 next	 round	 of	 replication	
[3].	 The	 expense	 of	 this	 error-prone	
synthesis	 by	 TLS	 polymerases	 is	 to	 rescue	
cells	 from	 replication	 stress,	 which	 would	
have	 otherwise	 committed	 cells	 to	 cell-

death	 from	 the	 un-repaired	 DNA	 lesion.	
Evolutionarily,	 the	 introduction	 of	 new	
mutations	drives	organismal	fitness,	but	the	
same	 principal	 of	 inadvertent	 introduction	
of	 deleterious	 mutations	 propels	
tumorigenesis	and	disease	[3,	4].		
	
There	 are	 10	 human	 TLS	 polymerases—
REV1,	 POL	η,	 POL	 ι,	 POL	 κ,	 POL	 ζ,	 POL	 μ,	
POL	λ,	POL	β,	POL	ν,	and	POL	θ—distributed	
in	4	families	(the	Y,	B,	X	and	A)	[3].	Prim	Pol	
TLS	 polymerase,	 a	 TLS	 polymerase	 has	 an	
additional	 primase	 activity	 [4,	 5].	 In	 this	
brief	 review,	we	will	 focus	on	 the	Y-	 family	
TLS	 polymerases	 (REV1,	 POL	η,	 POL	 ι,	 POL	
κ)	 and	 POL	 ζ	of	the	B-family.	 Distinct	
structural	 characteristics	 of	 TLS	
polymerases	 aid	 their	 DNA	 damage	 bypass	
capability	over	the	replicative	polymerases.	
For	 instance,	 the	 TLS	 polymerases	 possess	
relatively	 smaller	 thumb	 and	 finger	
domains,	 which	 allow	 the	 formation	 of	 a	
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larger	 catalytic	 site	 to	 not	 only	
accommodate	bulky	damages,	but	also	host	
the	 incoming	 nucleotide	 across	 it	 [1,	 6].	 In	
addition,	the	TLS	polymerases	lack	the	3ʹ-5ʹ	
exonuclease	 activity	 of	 replicative	
polymerases,	 thereby	 accepting	 the	
incorporation	 of	 incorrect	 nucleotides	 and	
facilitating	 an	 error-prone	 mode	 of	 DNA	
synthesis	 [7,	 8].	 The	 significance	 of	 this	
unique	 damage	 bypass	 ability	 and	 its	
importance	 to	 human	 health	 is	 seen	 in	
Xeroderma-Pigmentosum	 patients,	 who	
lack	 POL	 η,	 and	 are	 thus	 incapable	 of	
bypassing	UV	dimers	regularly	formed	from	
sunlight	 and	 hence	 are	 cancer-prone	 [3,	 9-
11].		
	
Mechanistically,	 the	 TLS	 process	 is	
proposed	 to	 proceed	 via	 two	 model	
pathways—the	 polymerase	 switch	 model	
and	 the	 gap-filling	 model	 [1,	 3].	 In	 the	
polymerase	 switch	 model,	 REV1	 TLS	
polymerase	 functions	 as	 a	 scaffolding	
protein	 and	 orchestrates	 the	 ‘insertion’	
across	 and	 ‘extension’	 past	 the	 damaged	
DNA,	 whereby,	 ‘insertion’	 polymerases,	
such	as	POL	η,	POL	ι,	POL	κ,	and	less	often	
REV1	 itself	 (by	 means	 of	 its	 deoxycytidyl	
transferase	 activity),	 inserts	 nucleotides	
across	the	damaged	base	[12-14].	To	extend	
DNA	 synthesis	 beyond	 the	 damaged	 site,	
POL	 ζ	and	in	certain	contexts,	POL	κ	is	used	
[12,	 15].	In	both	instances	 of	 insertion	 and	
extension,	 REV1	 exclusively	 utilizes	 it	 C-
terminal	 domain	 (CTD),	 where	 distinct	
interfaces	 at	 the	 REV1	 CTD	 are	 known	 to	
interact	 with	 both	 the	 insertion	 and	 the	
extension	 polymerases	 [16,	 17].	 REV1	CTD,	
a	 100	 amino	 acid,	 conserved	 domain,	
consisting	of	4	amphipathic	helices,	engages	
in	 protein-protein	 interactions	 with	 both	
the	inserter	and	extender	polymerases	[18].	
Here,	 the	 REV1-interacting	 region	 (RIR)	
containing	 sequences	 of	 the	 inserter	
polymerases—POL	 η,	 POL	 ι	 and	 POL	 κ–-
contains	 two	 conserved	 phenylalanine	
residues	that	 interact	with	specific	residues	

within	 the	 α1	 and	 α2	 helix	 of	 REV1	 CTD,	
forming	 one	 distinct	 RIR-interaction	
interface	 [17].	 Similarly,	 several	 key	
residues	 within	 the	 α3	 and	 α4	 helices	
interact	with	REV7	of	the	POL	ζ	complex	to	
form	the	other	independent	interface.	REV1	
CTD	 can	 simultaneously	 interact	 with	 both	
the	 inserter	 and	 extender	 TLS	 polymerases	
via	these	interfaces.	It	is	speculated	that	the	
switch	 from	 insertion	 to	 extension	 is	
facilitated	by	the	POL	δ3	subunit	of	the	POL	
ζ	 complex—(REV3,	 REV7,	 POL	 δ2	 and	 POL	
δ3),	 which	 is	 now	 referred	 to	 as	 POL	 ζ4	
complex—which	 interacts	 with	 the	 REV1	
CTD	by	its	RIR	sequences	[19,	20].		
	
The	 gap-filling	 model	 of	 TLS	 synthesis	 is	
proposed	to	account	for	several	key	cellular	
events,	 such	 as	 the	 immunoglobulin	 gene	
hypermutation,	the	final	DNA	synthesis	step	
of	 the	DNA	repair	pathways,	and	 the	 filling	
of	gaps	across	UV	photoproducts	[6,	21-23].	
The	exact	nature	of	events	 that	 recruit	 the	
TLS	polymerases	and	facilitate	TLS	synthesis	
at	DNA	gaps	is	largely	less	well	understood.		
	
More	 recently,	TLS	polymerases	are	known	
to	 play	 other	 important	 roles	 in	 cells,	 such	
as	 REV1-mediated	 replication	 of	 G-
quadruplex	structures	and	REV7-dependent	
cell	 cycle	 regulation	 and	 telomere	
maintenance	 [24-26].	 Interestingly,	 TLS	
polymerases	were	also	shown	to	contribute	
to	 chemoresistance	 during	 cancer	
treatment	as	is	discussed	next.	
	
TLS-dependent	 chemoresistance	 and	
cancer	relapse	
	
Recently,	 three	 landmark	 articles	 revealed	
that	 siRNA-mediated	 suppression	 of	 TLS	
polymerases	not	only	sensitized	cancer	cells	
to	 increased	 cell-death,	 but	 also	 reduced	
their	 acquisition	 of	 intrinsic	 and	 acquired	
mutations	 during	 chemotherapy	 [4].	 These	
observations	 suggest	 that	 the	 TLS	
polymerases	 modulate	 tumor	 response	 to	
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chemotherapy	 [4].	 The	 first	 of	 these	 three	
articles	 showed	 that	 Rev3	 inhibition	 in	 the	
lung	 adenocarcinoma	 cells,	 KrasG12D/p53-/-,	
not	 only	 sensitized	 these	 cells	 to	 cisplatin	
treatment,	 but	 also	 enhanced	 survival	 of	
these	Rev3	deficient	 tumors	 [27].	 Even	 the	
cisplatin-induced	 mutagenesis	 in	 these	
KrasG12D/p53-/-	 cells	 was	 reduced	 after	
knockdown	 of	 either	 Rev3	 or	 Rev1.	
Likewise,	 by	 using	 the	 Eμ-myc	 arf-/-	 mouse	
model	 of	 B-cell	 lymphoma,	 it	 was	 shown	
that	 recurrent	 cycles	 of	 engraftment	 of	
Rev1-deficient	 tumors	 along	 with	
cyclophosphamide	 treatment,	 exclusively	
sensitized	 these	 tumor	 cells	 to	
chemotherapy	 compared	 to	 the	 Rev1-
proficient	engrafted	 tumors	 [28].	Similar	 to	
the	 lung	 adenocarcinoma	 cells,	 the	 B-cell	
lymphoma	 cells	 had	 reduced	
cyclophosphamide-induced	 mutagenesis,	
which	strongly	supports	the	hypothesis	that	
TLS	 polymerases	 regulate	 chemotherapy	
responses	in	cancer	cells	and	that	they	play	
an	 important	role	 in	acquired	mutagenesis.	
This	 is	 an	 important	 observation	 given	 the	
fact	 that	 tumor	 relapse	 is	 known	 to	 be	
caused	 by	 chemotherapy-induced	
mutagenesis.	 In	 the	 third	 breakthrough	
publication	 that	 explored	 an	 siRNA	
mediated	strategy	to	knockdown	both	Rev1	
and	 Rev3	 via	 a	 nanoparticle-mediated	
delivery	 system	 showed	 a	 dramatic	
inhibition	 of	 tumor	 growth	 and	 enhanced	
survival	 in	 the	 LnCaP	 prostate	 xenograft	
mouse	model	[29].		
Subsequent	 studies,	 such	 as	 the	 REV7	
depletion	 in	 ovarian	 cancer	 cells;	 REV3	
inhibition	 in	 cervical	 cancer	 cells;	 etc.,	 also	
showed	an	enhanced	sensitization	of	cancer	
cells	 to	 chemotherapy	 and	 reduction	 in	
mutagenesis—thereby	 augmenting	 strong	
support	 to	 the	 hypothesis	 that	 TLS	
polymerases	 modulate	 tumor	 response	 to	
chemotherapy	 and	 mutagenesis	 [30,	 31].	
Together,	 these	 studies	provide	 compelling	
evidence	 that	 by	 directly	 inhibiting	 the	 TLS	
polymerases	in	cancer	cells	by	drug	targets,	
cancer	 cells	 can	 be	 similarly	 sensitized	 to	

enhanced	killing	and	reduced	mutagenesis.		
	
Drug	targets	to	suppress	TLS		
	
In	 order	 to	 successfully	 inhibit	 TLS,	
conceptually,	both	the	catalytic	activity	and	
the	 key	 protein-protein	 interactions	 of	 the	
TLS	polymerase	can	be	targeted.	Molecules	
that	 would	 disrupt	 these	 activities	 can	 be	
used	 as	 adjuvants	 during	 chemotherapy.	
Examples	 of	 molecules	 that	 specifically	
target	 the	 catalytic	 function	 of	 TLS	
polymerases	 include,	 pamoic	 acid,	
aurintricarboxylic	 acid,	 and	 ellagic	 acid	 to	
inhibit	 POL	 ι	and	 POL	 η’s;	 candesartan	
cilexetil	 to	 target	 POL	 κ;	 and	 3-O	 –
methylfunicone	that	obstructs	POL	κ,	POL,	i,	
POL	η	activity	[32-34].	Although	compelling	
in	 extent	 of	 a	 specific	 TLS	 polymerase	
inhibition,	 the	 catalytic	 function	 inhibitors	
may	 not	 be	 sufficient	 to	 suppress	 TLS	
completely.	 Often	 the	 TLS	 polymerases	
exhibit	 redundant	 functionality,	 whereby	
absence	 of	 one	 TLS	 polymerase	 is	
compensated	 for	 by	 another	 TLS	
polymerase	 to	 rescue	 the	 ensuing	
replication	 stress.	 For	 example,	 POL	ι	 and	
POL	κ	can	bypass	UV-dimers	in	the	absence	
of	POL	η	 [11,	35],	which	would	necessitate	
the	 use	 of	 multiple	 inhibitors.	 Moreover,	
more	 work	 needs	 to	 be	 done	 to	 ascertain	
their	 target	 specificity	and	potency	as	drug	
targets	in	vivo.		
	
On	 the	 other	 hand,	 the	 second	 avenue	 of	
inhibiting	 TLS	 by	 targeting	 the	 protein-
protein	 interactions	 could	 be	 a	 promising	
strategy.	So	far	only	two	examples	exist	that	
illustrate	 the	 possibility	 of	 targeting	 the	
protein-protein	 interactions	 of	 TLS	
polymerases.	 In	 the	 first	 instance,	 a	 REV7	
binding	 small	 molecule	 inhibitor	 that	
disrupts	its	interaction	with	REV3,	was	used	
to	 moderately	 suppress	 interstrand	 cross	
link	 repair	 in	 cells	 [36].	Whether	 this	 same	
inhibitor	 could	 suppress	 TLS	 is	 not	 known.	
In	the	second	 instance,	 two	small	molecule	
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inhibitors	 (SMi)	 that	 targeted	 the	 RIR	
interface	of	REV1	were	shown	to	inhibit	TLS	
[37].	Here,	the	two	molecules	coined	4	and	
5	were	shown	to	first	bind	the	RIR	region	of	
REV1	on	specified	residues	in	a	fluorescence	
polarization	 (FP)	 assay.	 Further,	 these	 SMi	
were	 shown	 to	enhance	 the	 cytotoxicity	of	
cisplatin-treated	 cells,	 while	 reducing	
mutagenesis	 rate	at	 the	HPRT	 locus.	This	 is	
the	first	true	example	of	TLS	inhibitors	that	
have	the	potential	to	be	tested	as	adjuvants	
during	chemotherapy	treatment	in	patients	
(Figure	1).	
	
Being	 the	 first	 study	 to	 characterize	 a	
promising	 TLS	 adjuvant,	 key	 observations	
from	 this	 study	 are	 briefly	 described	 here.	
The	SMi	4	and	5	were	identified	in	a	FP	pilot	
screen	 of	 4800	 molecules.	 These	 small	
molecules	or	scaffolds	contain	a	“right-side”	
piperidinyl	 ketone	 linked	 across	 an	 amide	
bond	to	a	“left-side”	substituted	thiophene	
(Figure	 1).	 Nuclear	 magnetic	 resonance	
(NMR)	 studies	 revealed	 a	 direct	 binding	 of	
these	 molecules	 to	 the	 REV1	 CTD	 as	
indicated	 by	 the	 shift	 in	 the	 NMR	 spectra.	
Further,	 incubation	 of	 mouse	 and	 human	
cells	with	cispatin	and	the	SMi’s	resulted	in	
enhanced	 killing,	 while	 reducing	 the	 HPRT	
gene	mutation	rate	in	these	cells.	Whether,	
these	molecules	 can	 reduce	 tumor	 volume	

and	 enhance	 survival	 in	 cancer	 mouse	
models	 in	 not	 known.	 These	 experiments	
would	be	key	to	discovering	drug	targets	to	
combat	chemoresistance	in	patients.		
	
Conclusion	
Translesion	 synthesis	 (TLS)	 is	 an	 important	
DNA	 damage	 bypass	 process,	which	 allows	
replication	 to	 continue	 in	 the	 presence	 of	
aberrant	 DNA	 lesions.	 Recent	 reports	
indicate	 that	 knockdown	 of	 key	 TLS	
polymerases	 sensitizes	 cancer	 cells	 to	
enhanced	 killing,	 while	 also	 reducing	 their	
acquired	 mutagenesis	 rates.	 These	
observations	 suggest	 that	 TLS	 polymerases	
could	 be	 responsible	 for	 the	
chemoresistance	and	cancer	relapse	seen	in	
patients.	As	such,	inhibiting	TLS	polymerase	
activity	 during	 chemotherapy	 could	 be	 an	
effective	 strategy	 for	 cancer	 treatment.	
Very	 recently,	 small	 molecule	 inhibitors	
(SMi)	 have	 been	 shown	 to	 bind	 specific	
REV1	 interfaces	 in	 vitro	 and	 sensitize	
cisplatin-treated	 cells,	 while	 reducing	 their	
mutagenesis	rate.	Future	studies	that	would	
show	 the	 efficacy	 of	 these	 SMi	 in	 reducing	
tumor	volumes	and	enhancing	 life	 spans	 in	
tumor	mouse	models	would	 help	 establish	
TLS	inhibitors	as	promising	adjuvants	during	
chemotherapy	treatment.		
	

	

Figure	 1:	 Inhibition	 of	 translesion	 synthesis	 by	 targeting	 REV1-mediated	 protein-protein	
interactions	 by	 molecules	 that	 binds	 to	 its	 distinct	 interfaces.	 Shown	 are	 two	 exemplary	
molecules	4	and	5	that	target	the	RIR	 interface	of	REV1,	which	could	reduce	access	to	the	RIR	
containing	 TLS	 polymerases	 and	 inhibit	 TLS.	 The	 read	 outs	 of	 an	 inhibited	 TLS	 would	 be	 an	
enhanced	cell	death	and	resuced	mutagenesis.	 	 “Adapted	with	permission	 from	(Identification	
of	Small	Molecule	Translesion	Synthesis	Inhibitors	That	Target	the	Rev1-CT/RIR	Protein−Protein	
Interaction.	Vibhavari	Sail,	Alessandro	A.	Rizzo,	Nimrat	Chatterjee,	Radha	C.	Dash,	Zuleyha	Ozen,	
Graham	C.	Walker,	Dmitry	M.	Korzhnev,	and	M.	Kyle	Hadden.	ACS	Chemical	Biology	2017	12	(7),	
1903-1912.	DOI:	10.1021/acschembio.6b01144).	Copyright	(2017)	American	Chemical	Society”.	
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