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In 2009, a new family of DNA modifying enzymes, 

the Tet-eleven translocation family was 

identified as 2-oxoglutarate (2-OG) and Fe(II)-

dependent dioxygenases. This family of enzymes 

comprises three proteins TET1, TET2 and TET3 

that share a carboxyl-terminal core catalytic 

domain consisting of a conserved cysteine-rich 

domain, a double stranded β-helix domain and 

binding sites for the cofactors Fe(II) and 2-

oxoglutarate. At their amino-terminal region, 

TET1 and TET3 have a CXXC DNA-binding 

domain1. Interestingly, during evolution, the 

segment encoding the CXXC domain of TET2 was 

separated from the region encoding the catalytic 

domain and is now encoded separately by a 

neighboring gene, IDAX (also called CXXC4)2. 

All TET proteins are oxygenases capable of 

oxidizing 5-methylcytosine (5mC) into 5-

hydroxymethylcytosine (5hmC) and further into 

5-formylcytosine (5fC) and/or 5-carboxylcytosine 

(5caC)1,3. Since their discovery, dissecting the role 

of TET enzymes has been the subject of many 

studies which revealed their implication in DNA 

demethylation and gene expression regulation4,5. 

Several routes have been described for TET-

mediated active and passive DNA 

demethylation6. It was suggested that 5hmC can 

be diluted through replication due to the low 

enzymatic activity of DNMT1 on hemi-

hydroxymethylated DNA6. By an alternative 

pathway, 5fC and 5caC are targeted by TDG DNA 

glycosylase and the base-excision-repair 

machinery to generate unmethylated cytosines6. 

Interestingly, cytosine oxidation products might 

play a role beyond functioning as transient 

intermediates in active DNA demethylation, 

providing an additional layer to the epigenetic 

code5. Indeed oxidized mC were proposed to 

serve as an anchor for specific epigenetic 

readers, to modify the recruitment of 

transcription factors or mC-binding proteins, and 

to affect RNA polymerase II elongation rate, 

indicating that TET-mediated oxidation could 

directly regulate transcription5. In addition, 

studies showed that TETs regulate several target 

genes by interacting with co-activators such as 

OGT7 or co-repressors like Sin3A, PRC28-10. 

Whether the catalytic activity of TET is required 

in such cases is not completely well defined. 

Nevertheless, emerging evidence, including our 

study10, reveal catalytic-independent functions 

of TET enzymes during development10-12.  

TET enzymes in development and diseases  

Because TET enzymes are implicated in DNA 

demethylation, many studies focused on their 

role at two major waves of DNA methylation 

remodeling, in the early post-fertilization zygote 

and during primordial germ cell (PGC) 

specification.  

PGCs, which will give rise to the oocytes or 

spermatozoids and show high expression of TET1 

and TET2, undergo two stages of DNA 

demethylation. Stage I of DNA demethylation in 

PGCs is independent from TET enzymes’ activity; 

however, stage II involves their catalytic 

function13.  The latter occurs in the mouse 

particularly at E9.5-E12.5, when genome-wide 

DNA demethylation, erasure of genomic 

imprints, and large-scale chromatin remodeling 

are happening. At those stages, TET1 is suggested 
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to be critical for the regulation of a set of 

germline reprogramming-responsive genes 

involved in gamete generation, meiosis and the 

maintenance of DNA methylation in gonadal 

PGCs14. Tet3 is highly expressed in oocytes but 

not in PGCs. All three TETs are detectable in 

murine sperm cells in considerable amounts4. In 

line with that, TET enzymes are successively 

expressed in human spermatogenesis and their 

expression level is pivotal for male fertility15. 

Female mice lacking TET1 have smaller ovary 

size, reduced oocyte number, decreased fertility 

and present small litter size16.  

After fertilization, in the zygote, the paternal 

genome loses its DNA methylation marks rapidly. 

Several studies suggested that this 5mC loss in 

the paternal pronuclei is attributed mostly to the 

activity of the maternal TET317,18. However, the 

latter is not essential for a normal development 

because ablation of maternal TET3 is compatible 

with embryonic development19. While maternal 

TET3 disappears rapidly during the first cleavages 

of the embryo, the expression levels of Tet1 and 

Tet2 increase during preimplantation 

development. Indeed, TET1 and TET2 are highly 

expressed in the inner cell mass (ICM) of the 

blastocyst and embryonic stem cells (ESCs), the 

in vitro correlate of ICM, where 5hmC is present 

as well3,20. After implantation, while TET2 and 

TET3 are not detectable, TET1 expression persists 

in the epiblast and at lower levels in the extra-

embryonic ectoderm (ExE) of embryonic stage 

E6.5. At the latter stage, TET1 plays non 

redundant functions specific to both lineages10 

Afterwards, TET1 expression diminishes rapidly 

at E7.5 and persists only faintly in the head folds 

and neural tube by E8.5. TET3 expression is 

detectable from E8.5. After axial rotation of the 

embryo, expression of the three TETs 

progressively increases in the developing brain of 

E9.5-10.510. 

The physiological importance of TETs in 

development has been investigated using several 

genetic knockout (KO) mouse models. Studies 

have shown that constitutive deletion of Tet3 

leads to neonatal lethality21 and that TET2 

deletion results in a normal development22. 

However, reports concerning TET1 KOs have 

been more variable depending on the mice 

model used, resulting in some conflicting 

conclusions. While two studies observed that 

Tet1 KO mice are born without any apparent loss 

in utero23,24, another study also targeting 

deletion of the C-terminal catalytic function 

describe partial embryonic lethality, with only 

30% of the expected number of Tet1 knockouts 

surviving to birth25. Because in those studies 

TET1 KOs were generated by strategies targeting 

the C-terminal catalytic site, they may have 

allowed expression of a large N-terminal 

fragment (~70 kDa) and resulted in hypomorphic 

phenotypes requiring combined deletion of 

other TETs21,26 in order to observe a stronger 

phenotype. Interestingly, in a Tet1 gene trap (GT) 

mice model, investigated by our group and the 

group of Yi Zhang10,16, embryonic lethality was 

observed starting at E8-E9.5 with different 

penetrance depending on the genetic 

background (100% in mixed background strains 

and 60% in C57BL/6J incipient congenic strain). 

Subsequently, we validated these GT phenotypes 

in a new mice model that we developed by an 

independent targeting strategy in which the lacZ 

reporter cassette is inserted immediately in-

frame downstream of the ATG start codon10. The 

latter model confirmed that TET1 can be 

essential for embryonic development. Briefly, 

our analysis10 of those two mice models with 

ablation in the 5’ coding sequence suggests that 

while the catalytic domain of TET1 can be 

dispensable, further regulation by its N-terminal 

domain is critical for a proper development. This 

clarifies why previously reported studies showed 
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little or no effect of TET1 loss on embryonic 

development.  

The functions of TET enzymes are not limited to 

early embryonic developmental stages and to 

embryonic stem cells (ESCs). Studies point 

towards an important role of these proteins in 

the brain26 and hematopoietic lineages5; in line 

with that, they seem to be implicated in several 

diseases related to those tissues (i.e. Leukemia5, 

Alzheimer disease, Huntington's disease27…).  

In post-natal development, TET1 and 5hmC are 

abundant in the brain and TET1 has been 

investigated as an important contributor to brain 

development28. Recent studies indicated that 

TET1 deficiency decreases 5hmC levels in 

brain29,30, resulting in impaired hippocampal 

neurogenesis31. Abnormal TET1 expression leads 

to neuronal activity–regulated gene 

downregulation, synaptic plasticity alterations, 

and cognitive impairments32,33. Yet, little is 

known about the functions of TET1 in the early 

embryonic development of neuronal and brain 

tissues. 

Finally, the disruption of TET1 and TET2 in adult 

hematopoietic tissues leads to increased 

hematopoietic stem cell (HSC) function34,35, 

variable degrees of myeloid and lymphoid 

alterations and defects in terminal 

hematopoietic lineage differentiation. For 

example, Tet2–/– mice develop leukemia 

spontaneously35. In humans, somatic alterations 

and mutations in TET2 are observed in a wide 

range of hematological disease5. Even though 

somatic alterations of TET1 or TET3 are less 

abundant than TET2 in patients with 

hematological diseases, murine models 

combining double mutations of TET enzymes are 

prone to developing late-onset B-cell 

lymphoma34 (TET1/2 KO) or a rapid and fully 

penetrant myeloid leukemia within 7 weeks36 

(TET2/3). It is important to mention that the 

implication of TET enzymes in malignancies 

seems not to be limited to hematological 

cancers. Indeed, mutations of TET enzymes and 

modifications in 5hmC levels have been 

described in other cancers (i.e. gastric, prostate, 

liver, lung, breast cancer…)5. However, their 

direct role in such cancers still needs to be 

investigated.  

Since their discovery, many facets of TET 

enzymes roles in pre- and post-natal 

development and their involvement in many 

diseases have been revealed. However, many 

other aspects still need to be dissected and 

several questions need to be answered. For 

example, it is important to uncover the 

mechanisms of actions of TET enzymes, their 

targeted pathways and their initiating role 

underlying those diseases. Moreover, it is 

essential to understand the impact of any 

deregulations in TET functions acquired during 

embryonic development on post-natal health. 

Regarding the latter, our recent study10 revealed 

many changes in DNA methylation at pre-

gastrulation stages upon loss of TET1 (For details 

see our earlier article published in PDJ). 

Interestingly, only 40% of those changes were 

present at differentially expressed genes at that 

stage; however, the majority was associated with 

genes involved in diseases (i.e. Alzheimer, 

Huntington…). Even though the catalytic 

functions of TET1 at the early pre-streak embryo 

seem to be “dispensable” for embryonic 

development, they may be the basis of many 

post-natal diseases. 
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