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Abstract The placenta is a highly specialized organ that is indispensable for intrauterine development to 
occur. Trophoblast cells are the major constituents of the developing placenta. They are the first cell type 
to arise very early in development, making up the trophectoderm, the outer layer of the blastocyst, 
segregating from the inner cell mass which gives rise to the embryo itself. The various functions of 
trophoblast cells early in development are vital for reproductive success, as they lay the foundations for 
a normal pregnancy and a healthy fetus. A better understanding of the mechanisms underlying these early 
events, including how the early trophoblast niche is regulated by transcription factors and specific 
epigenetic modifiers, is critical for understanding and eventually treating placental pathologies, which can 
inevitably cause pregnancy complications. 
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The placenta is the defining organ of most 
mammals, providing a nutritive conduit that is 
crucial for embryonic development to occur. In 
addition to acting as a barrier protecting the 
fetus from any maternal immune attack and a 
bridge mediating the exchange of nutrients and 
waste products between maternal and fetal 
tissues, it is a factory of hormones (placental 
lactogens) (1), angiogenic factors (Vegf, 
Proliferin) (2) and tissue remodeling factors 
(Mmps, uPA) (3, 4) all required for a successful 
pregnancy. The mammalian placenta comprises 
several cell types of the trophoblast lineage. 
Specification of the trophoblast lineage occurs at 
the blastocyst stage, during which the first 
differentiation event takes place, resulting in 
two distinct cell groups: the inner cell mass (ICM) 
and the outer cell layer, known as the 
trophectoderm (TE). The developmental 
potential of these two cell groups is tightly 
restricted into the embryonic and 
extraembryonic lineages, respectively (5).  
 
ICM and TE both harbour stem cell potential and 
can give rise to self-renewing stem cell lines in 
vitro following isolation from the mouse pre-
implantation blastocyst:  embryonic stem cells 
(ESCs) and trophoblast stem cells (TSCs), 
respectively. Upon blastocyst implantation the 
polar TE (in contact with the ICM) proliferates to 

form the extraembryonic ectoderm (ExE) and the 
ectoplacental cone (EPC), which together 
constitute the extraembryonic tissues of the 
post-implantation conceptus. TSC lines can also 
be derived from the ExE, which comprises a self-
renewing trophoblast population, after 
implantation up to embryonic day (E) 8.5 of 
development (6). TSCs are considered 
multipotent, as they exhibit virtually the same 
developmental capacity as their progenitors in 
the blastocyst. In other words, they can 
differentiate into all of the distinct cell types of 
the placenta, namely trophoblast giant cells, 
spongiotrophoblasts and syncytiotrophoblasts. 
Importantly, they also contribute to the 
placental tissues in chimeras (6). Hence, TSCs are 
an invaluable model for studying the molecular 
mechanisms underpinning placental 
development, including trophoblast self-renewal 
and differentiation.  Despite the integral role of 
the extraembryonic lineage in embryo 
implantation, development and long-term 
disease predisposition, TSCs have received 
comparatively less research attention than their 
developmental counterparts, the ESCs. 
However, focus appears to be shifting as recent 
ground-breaking research has considerably 
advanced our understanding of TSC regulation, 
including the definition of key transcription 
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networks, signaling pathways and epigenetic 
modifiers. 
 
For instance, several studies have revealed the 
integral role specific transcription factors (TFs), 
such as Tead4, Cdx2 and Eomes, play in the 
establishment/maintenance of TS cell lines 
cultured in vitro, self-renewal and 
differentiation. Tead4 is one of the earliest-
acting proteins in the specification of the murine 
TE, where it interacts with nuclear Yap1 to 
induce the expression of Cdx2. Mutation of 
Tead4 results in a failure of blastocoel formation 
and thus embryonic lethality at the peri-
implantation stage (7, 8), highlighting its 
importance in the initial stages of embryonic 
development. Cdx2 is one of the best studied TFs 
involved in trophoblast cell lineage 
establishment. Unlike Tead4, Cdx2 is not critical 
for TE specification but it plays an integral role in 
TE maintenance and proliferation. As such, Cdx2 
mutant embryos initially form blastocysts, but 
they subsequently collapse and cannot implant 
(9). Meanwhile, Eomes expression is first 
detected in the TE at the blastocyst stage and 
continues into ExE at the post-implantation 
stage. Eomes plays a role in further trophoblast 
expansion, as shown by Eomes-/- TE, which does 
not transition to trophoblast (10). Esrrb is 
another protein that is integral to the 
maintenance of the multipotent state. It is an 
orphan nuclear receptor acting as a TF, and its 
critical role in early mammalian development is 
evident from the embryonic lethality observed in 
Esrrb-/- mutant conceptuses, resulting from 
defects in the trophoblast compartment. 
Formation of ExE is unaffected in these mutants, 
but subsequent maintenance of trophoblast 
expansion in the chorionic ectoderm fails, 
resulting in aberrant trophoblast differentiation 
into giant cells (11). In the early post-
implantation conceptus (E6.5), Eomes, Cdx2 and 
Esrrb exhibit a similar expression pattern in the 
distal portion of the ExE closest to the epiblast, a 
derivative of ICM. This expression profile, 
together with the inability to derive TSCs in the 
absence of any of these factors, supports the 
view of these TFs as TSC markers. Accordingly, 

they are rapidly downregulated upon 
trophoblast differentiation in vivo and in vitro 
(6).  
A number of other TFs are known to have pivotal 
roles in the trophoblast compartment and in the 
maintenance of TSCs, although their expression 
profile also extends to trophoblast cells outside 
the immediate TSC niche. One of these, Elf5, is a 
TSC marker that is expressed from the late 
blastocyst stage onwards and is detected in most 
cells of the ExE. Thus, it initially acts downstream 
of Cdx2 and Eomes, but is subsequently essential 
to maintain Cdx2 and Eomes expression in the 
ExE within the post-implantation conceptus (12, 
13). The integral role of Elf5 in ExE formation is 
demonstrated by the embryonic lethality around 
E8.5 observed in Elf5 mutants, characterized by 
EPC differentiation in the absence of ExE 
formation (12, 14). AP-2γ, also known as Tfap2c, 
is another important TF in the regulation of TSC 
fate. AP-2γ cooperates with Sox2 in a TSC-
specific manner to maintain the multipotent 
state of trophoblast stem or progenitor cells. AP-
2γ can physically interact with Sox2 in TSCs, 
recruiting it to target sites where they co-occupy 
self-renewal gene loci (15). Interestingly, AP-2γ 
is expressed in all trophoblast cell types, 
including the TE of blastocyst-stage embryos, 
and after implantation in ExE, EPC and giant cells 
(16, 17). AP-2γ-null embryos exhibit several 
trophoblast defects, including diminished cell 
growth of the ExE and EPC, and a decreased giant 
cell population, eventually resulting in failure to 
form the terminally differentiated placental 
labyrinth (16). These defects lead to growth 
retardation of the embryo before mid-gestation 
and ultimately embryonic lethality around E9.5 
(18).  
 
The ability to grow stem cells in vitro and expand 
them indefinitely depends on our understanding 
of the external signals required for their self-
renewal. In the case of TSCs, Fgf, heparin and 
mouse embryonic fibroblast conditioned 
medium (MEF-CM) were found to be necessary 
and sufficient for maintaining the proliferative 
and self-renewal capacity of TSCs in vitro (6). In 
vivo, Fgf4 is secreted by the ICM and, 
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subsequently, the epiblast (19). It acts in a 
paracrine manner on the TE and ExE, which 
express the cognate receptor, Fgfr2c. Activation 
of Fgf signaling mediates trophoblast self-
renewal and proliferation (6, 20) and proximity 
to the Fgf source is, therefore, key to the 
maintenance of the trophoblast multipotent 
state. Accordingly, mural TE, which are not in 
contact with the ICM, are the first to 
differentiate into giant cells. Likewise, the EPC 
differentiates into spongiotrophoblasts and 
giant cells as it grows away from the epiblast. In 
TSCs cultured in vitro, Fgf4 withdrawal results in 
trophoblast differentiation, mainly towards the 
giant cell fate (6). Fgf signaling is indispensable 
for early embryonic development, particularly 
extraembryonic development, as indicated by 
Fgf-signaling-component mutants, which die 
peri- or early post-implantation. For example, 
Fgf4- and Fgfr2-depleted conceptuses die shortly 
after implantation (21-23), while mutation in 
Frs2a, a mediator of Fgf signaling, results in 
embryonic lethality by E7.5-8.0 (24, 25). Frs2a is 
integral to the maintenance of the TSC 
progenitor population in ExE, as Frs2a-/- embryos 
exhibit defective development and 
differentiation of the ExE due to impaired Fgf 
signaling (25). In response to the Fgf signal, Frs2a 
binds Shp2 and activates the Erk cascade. Shp2 
mutant embryos fail to expand the trophoblast 
lineage and die peri-implantation with 
diminished giant cell numbers and ICM death. 
Furthermore, TSCs cannot be derived from Shp2 
mutant blastocysts (26). These findings imply 
that Erk activation downstream of Fgf signaling is 
critical for the development of extraembryonic 
lineages. This conclusion is further supported by 
the phenotype of Erk2-/- embryos, which exhibit 
trophoblast proliferation defects, failure to form 
ExE and EPC, and post-implantation lethality 
(27). Collectively, these mutant studies highlight 
the pivotal role of Fgf signaling in TSC 
maintenance and normal expansion of the 
trophoblast compartment.  
Regarding the essential, active component in 
MEF-CM, Erlebacher et al. reported the 
importance of Tgf-β superfamily members, 
namely either Tgf-β or Activin. These data 

corroborated earlier evidence from various Tgf-
β family member knock-outs (KOs) that 
suggested Tgf-β signaling plays an important role 
in the maintenance of TSCs (28, 29). Tgf-β is the 
ligand of a heterotetrameric transmembrane 
receptor complex composed of type I (Tgfβr1) 
and type II (Tgfβr2) receptors, which are Ser-Thr 
kinases. Similarly, Activin binds type I receptor, 
Acvr1b, in complex with type II receptor, Acvr2 
or Acvr2b (30). Upon Tgf-β or Activin binding, 
signal transduction involves the activation of 
Smad2/3 proteins via phosphorylation and 
nuclear translocation, which, in turn, regulate 
gene expression through interaction with 
transcriptional co-activators or co-repressors 
(30, 31). Tgf-β signaling in epithelial cells induces 
G1 cell-cycle arrest through Smad activation and 
altered expression of cell-cycle regulatory 
components, including upregulation of the 
cyclin-dependent kinase (Cdk) inhibitors, p15Ink4b 
and p21Cip1, and downregulation of Id1/2/3, 
which promote cell-cycle progression and inhibit 
cell differentiation (32, 33). Tgf-β signaling also 
downregulates c-myc: a TF essential for cell cycle 
progression (34). In TSCs, the cytostatic effect of 
Tgf-β is selectively inhibited by constitutively 
active Fgf signaling (28). The requirement of the 
Tgf-β signaling pathway for TSC maintenance 
and normal trophoblast differentiation is evident 
from mutations of the relevant receptors. Thus, 
deletion of the genes encoding the two Tgf-β 
receptors, Tgfβr1 and Tgfβr2, causes mid-
gestational lethality with defective 
vasculogenesis in the yolk sac (35, 36). KOs of 
Acvr1b are affected even earlier, as they exhibit 
a disorganised ExE by 6.5 and die by E8.5 (37). 
Meanwhile, Acvr2/2b DKO embryos (Type II 
Activin receptors) exhibit severe growth 
restriction of both embryonic and extra-
embryonic tissues, and they die by E8.5 (38). All 
three Activin receptors are expressed by the ExE, 
meaning that the effect of Activin is direct, i.e. 
via autocrine signaling (37, 39).  
Nodal is another Tgf-β superfamily member that 
is involved in the maintenance of the 
proliferating TSC population in vivo. Nodal-
depleted embryos exhibit failed TSC 
maintenance accompanied by TGC overgrowth 
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and absence of spongiotrophoblast and 
placental labyrinth formation (40). Nodal is 
expressed by the epiblast and binds to Activin 
receptors to activate Smad2/3, similar to Tgf-β 
and Activin (41). Nodal overexpression in TSCs 
can partially compensate for Fgf4 and MEF-CM 
removal, as it partially inhibits trophoblast 
differentiation (42). It is proposed that Tgf-β 
signaling is bi-functional, acting to maintain TSC 
pluripotency under Fgf control and, on the other 
hand, rapidly inducing TSC differentiation and 
cell-cycle arrest upon loss of Fgf4 signal (28). 
Overall, detailed molecular work both in vivo and 
in vitro has established the pivotal role of Fgf and 
Tgf-β signaling components for TSC 
maintenance.  
 
The concerted actions of TFs and signaling 
cascades lead to the establishment and 
maintenance of the first cell lineages. These 
functions are influenced by epigenetic 
modifications that affect chromatin organisation 
to mediate cellular plasticity or to underpin 
cellular differentiation. The best-studied 
epigenetic modification is methylation of 
cytosine at the 5-carbon position of cytosine 
(5mC), which most commonly occurs at CpG 
dinucleotides (43). When present at gene 
promoters, this marker is frequently associated 
with gene repression (44). In general, it is 
believed that DNA methylation has a pivotal role 
in ‘locking in’ cell fate decisions (45). As such, the 
progressive restriction of cellular plasticity is 
accompanied by accumulation of DNA 
methylation marks that impose a cellular 
memory and, ultimately, ensure stable, terminal 
cellular differentiation. Indeed, methylation 
patterns can define and distinguish each cell 
lineage (46-48). For example, Senner et al 
identified developmentally regulated sequence 
elements, such as CpG islands and promoters, 
exhibiting methylation profiles that differ 
between embryonic and extraembryonic 
lineages. Strikingly the study also showed that 
methylation can distinguish between the 
different extraembryonic lineages, trophoblast 
and extraembryonic endoderm (XEN). For 
example, key TFs for trophoblast specification, 

such as Cdx2, Tfap2c and Elf5, are highly 
methylated, hence repressed, in XEN stem cells, 
while, conversely, XEN-TFs are hypermethylated 
in TSCs (49).  
One key locus where the lineage-specific 
acquisition of DNA methylation has been shown 
to impose early cell fate restriction is the 
transcription factor, Elf5. Elf5 is methylated and 
stably repressed in the embryonic lineage, but 
hypomethylated and expressed in the 
trophoblast lineage, where it upregulates the 
expression of the trophoblast stem cell genes, 
Cdx2 and Eomes (50). Thus, after the first 
differentiation event, epigenetic modification of 
Elf5 sets the barrier between the two cell 
lineages; Elf5, therefore, functions as a 
gatekeeper, maintaining cell fate by reinforcing 
commitment to the trophoblast lineage and 
preventing cells of the embryonic lineage from 
differentiating into trophoblasts (50).  
Another intriguing aspect of TSC lineage 
restriction, maintenance and differentiation is 
the importance of protein abundance. For 
example, Latos et al showed that Elf5-mediated 
roles in TSCs are highly dependent on its protein 
expression level, which in turn affect its protein 
interactome. In TSCs, Elf5 interacts with Eomes, 
recruiting AP-2γ to trophoblast multipotency 
gene loci (triple-occupancy sites), inducing their 
expression and maintaining the trophoblast 
stem cell state. However, when Elf5 protein 
levels increase, it predominantly interacts with 
AP-2γ. As a result, this complex binds to double- 
and single-occupancy gene loci that contain the 
AP-2γ motif and are associated with trophoblast 
differentiation (51). In addition, Murray et al 
described how the dynamic expression of Plet1, 
another gene loci which is hypermethylated in 
ESCs, but hypomethylated in TSCs, affects 
trophoblast cell fate. In stem cell conditions 
Plet1 is highly expressed and facilitates the 
maintenance of the multipotent state through 
the induction of Elf5 expression. In contrast, 
Plet1 was shown to be also expressed in 
trophoblast giant cells, implying that this 
biphasic expression pattern is important in self-
renewal and differentiation. High Plet1 levels 
induce trophoblast giant cell differentiation, 
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whereas Plet1 depletion favours differentiation 
towards the syncytiotrophoblasts lineage (52).   
 
5-hydroxymethylcytosine (5hmC) is another 
important epigenetic modification. It derives 
from 5mC through the catalytic action of the Ten 
eleven translocation (Tet) enzymes (53). 5hmC 
has been associated with DNA demethylation, 
gene expression, open chromatin organisation 
and, generally, transcriptionally active genes 
(54-56). Both 5hmC and Tet proteins have been 
extensively studied for their role in maintaining 
the ES cell state, and their importance in 
epigenetic reprogramming during development 
has been well defined (57-60). Yet their role in 
the extra-embryonic lineage, and, in particular, 
in TSCs, had been widely overlooked until 
recently. Chrysanthou et al showed that Tet1/2 
play a significant role in safeguarding the 
trophoblast multipotent state, as Tet1/2 
depletion in TSCs resulted in trophoblast giant 
differentiation, accompanied by epithelial-to-
mesenchymal transition (EMT) and a transition 
from the mitotic cell-cycle to the endocycle (61). 
The endocycle (also known as 
endoreduplication) is a highly specialized 
characteristic of trophoblast differentiation, 
specifically the giant cell lineage. It involves an 
exit from the mitotic cell cycle to undergo 
repeated rounds of endoreduplication, resulting 
in highly polyploid “giant” cells (62, 63). Despite 
extensive studies on endoreduplication, the 
exact mechanisms governing its regulation in 
trophoblast differentiation have yet to be fully 
elucidated. Much is known about the cell-cycle 
machinery involved in endocycle regulation, 
including; inhibition of Cyclin B1 translation, 

increased Cyclin D1 expression (64) and 
oscillating Cyclin A/E expression (65). On the 
other hand, there is a limited understanding of 
how the epigenome is regulated during the 
mitotic cell cycle-to-endocycle transition (66, 
67). The fact that the depletion of the epigenetic 
modifiers, Tet1/2, induces giant cell 
differentiation (61), indicates that apart from a 
direct association with the mitotic machinery, 
evident by the Tet1 interaction with Cyclin B1 
(61), there could also be a general dynamic 
epigenetic signature facilitating cell cycle 
progression.  
 
TSCs have tremendous biomedical relevance as 
~30% of all human pregnancies are affected by 
placental-related defects (68), hence 
understanding placental development is 
paramount. A recent ground-breaking study 
highlighted the highly underestimated 
importance of proper placental development for 
embryo viability and growth (69). It was 
reported that 68% of KO lines that are lethal at 
or after mid-gestation exhibited placental 
dysmorphologies, whereas early lethality 
(E9.5–14.5) was almost 100% associated with 
severe placental malformations.  This 
highlights the absolute necessity of including 
extraembryonic tissues in the analysis of 
mouse mutant strains in developmental 
studies (69). Such efforts complemented with in 
vitro TSC studies will further characterise 
molecular mechanisms and trophoblast-specific 
functions, paving the way to deciphering human 
placental development and human reproductive 
biology in general.    
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