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Abstract—Crowd analysis is a popular topic in computer
vision, with important applications to video surveillance, social
media analysis, and multimedia retrieval, to name just a few
areas. In this paper, we review some of the physics-based methods
for group and crowd analysis in computer vision. In particular,
we examine approaches for physics-based analysis of groups,
crowds, and the simulation of crowds. The purpose of this
review is to categorize and delineate the various physics-based
and physics-inspired approaches that have been applied to the
examination of groups and crowds in video.

I. INTRODUCTION

The dynamic nature of video makes activity search and
recognition from video databases a very difficult problem
[28, 1, 2, 18, 26, 27]. This is especially apparent when
analyzing groups and crowds in video. Given the importance
of such analyses for video surveillance, social media analysis,
multimedia retrieval, and a host of other applications, many re-
searchers have started turning to established physics concepts
in order to combat this arduous task. Some of these methods
are inspired by physics while others are inherently rooted in
fundamental physics ideas.

In this paper, we give an overview of some of the more per-
tinent physics-based and physics-inspired methods for tackling
the important problem of group and crowd analysis in video.
We start by examining how researchers have used methods
inspired by basic physics concepts to determine the transition
from individuals to groups and crowds in Section II. Then,
in Section III, we review some of the rich body of work
in physics-based crowd analysis. Finally, in Section IV, we
turn to the problem of crowd simulations, which is rooted in
physics principles.

II. PHYSICS-BASED GROUP ANALYSIS

Before we can analyze crowds, we have to make the
determination that individuals have come together to actually
form a group or a crowd. Most researchers, like [14, 13, 31],
simply assume a group is any collection of individuals; others
[30] narrowly define a group as being determined by the social
relationships amongst pedestrians. [12] goes further and talks
about group formation in terms of personal space, proxemics,
and spatial relationships amongst people. In particular, they
use Perceived Personal Space and People Comfort as the
measures to detect grouping as either voluntary or involuntary.
[17] also posits a qualitative definition from sociology of a

group as a collection of individuals with a common goal and
defines a crowd as a large group of individuals in the same
environment sharing a common goal.

Although there are a few such qualitative models of groups
and crowds in computer vision, [23] is inspired by fluid dy-
namics and formulates a quantitative model for the transition
of individuals to groups and crowds. Specifically, [23, 24, 25]
model the transition of Individuals ⇒ Groups ⇒ Crowds
analogously to the transition of Individual Particles⇒N-Body
⇒Fluids in fluid dynamics, as shown in Figure 1. They thus
define the Group Transition Ratio, Gtr, as:

Gtr =
L

λ
(1)

where λ is the mean free path and L is the characteristic
length. The Gtr allows a quantitative characterization of the
formation and dispersion of groups, as well as identification
of so-called Atomic Group Actions by examining the time
variation of the Gtr.

III. PHYSICS-BASED CROWD ANALYSIS

Once a group or crowd is formed, we can employ any of
a plethora of crowd-analysis methods based on physics to
analyze the situation. [11] notes that crowds can be categorized
using the image space domain, the sociological domain, the
level of services, or the computer graphics domain. The
image space domain dynamics inform about crowd formation
when the density of people gets too large to do individual
tracking. Crowd density estimation models are currently based
on three prevalent model types: pixel-level analysis, texture
analysis, and object-level analysis. The sociological domain
deals with crowd mentality, in which crowds form a collective
psychology in response to different triggers; the most obvious
amongst these are: least effort hypothesis, lane formation, and
the bottleneck effect. The level of services provides different
crowd conditions in terms of the density of people and it’s
temporal evolution. Finally, the computer graphics domain
deals with crowd simulation on different levels to achieve
realistic models for crowd behaviour.

Many approaches, like [10, 3, 29, 15, 4, 22, 16], have
used physics-based approaches for analyzing the image space
domain. Although [15] uses joint models of appearance and
dynamics, called Dynamic Textures, to model complex dy-
namic scenes and crowd abnormalities, [4] deals with the
important problem of tracking in high density crowds. This
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Fig. 1. Physics-inspired model of transitions from individuals to crowds: modeling individuals as free particles, groups as an n-body, and crowds as fluids
in [23].

is challenging since, as the density of objects increases, the
number of pixels on each individual object decreases. The
constant interaction amongst the individuals and constant
occlusions by inter-object interactions also makes this task
difficult. Finally, the goal-directed dynamics and psychological
characteristics of a crowd influences how individuals in the
crowd behave. Their approach is based on the observation that
the motions of individuals in crowded scenes depends upon
the space-time interactions of individuals amongst themselves
as well as with the scene layout. This information about
natural crowd flow and scene constraints can be used as
priors to impose high-level direction for tracking purposes.
The crowd flow information and the scene constraints are
encapsulated by the idea of floor fields, which model the
interactions between individuals and their preferred direction
of movement by transforming long range forces into local ones
that affect the instantaneous probability of those local moves.
The transition probability of a tracked person then depends
on the strength of the floor field in his/her neighborhood. The
concept of a floor field is inspired by the field of evacuation
dynamics, where floor fields are manually designed to simulate
behaviors of pedestrians in panic situations and they compute
three floor fields from the visual data: a “Static Floor Field”, a
“Boundary Floor Field”, and a “Dynamic Floor Field”, which
can be picturized in Figure 2.

In [3], they handle crowded scenes by treating crowds as
a dynamic system in a specified field by using Lagrangian
Particle Dynamics for the segmentation of high density crowds
and detection of flow instabilities. They start by representing
moving crowds as an aperiodic dynamical system that is
manifested by a time-dependent flow field. A grid of particles
is then overlaid on this flow field and then advected using
numerical integration. The evolution of the grid of particles
through this flow field is tracked using a Flow Map; their
maximum eigenvalue is used to construct a Finite Time Lya-
punov Exponent field which, in turn, reveals the Lagrangian
Coherent Structures in the underlying flow. The existence of
these coherent structures is key for their theory as they divide
the flow into regions of qualitatively different dynamics.

[16] works from the perspective that people in crowds,
in some ways, behave as particles in fluids. As they point
out, crowds where there are few interactions between people
behave like gases and can be modelled using aerodynamics.
However, crowds where interaction forces tend to dominate

the motion of people can be modelled as a liquid using
hydrodynamics. They do this at both the macroscopic scale for
crowd segmentation and the mesoscopic scale for behaviour
detection. All their methods rely upon optical flow and the
associated particle advection from a Lagrangian approach to
fluid dynamics and builds upon the work of [10, 3, 29, 4, 22].

IV. PHYSICS-BASED CROWD SIMULATIONS

One of the main limitations in crowd analysis, however,
is the dearth of datasets consisting of videos of crowds.
Thus, many researchers rely upon robust, increasingly realistic
simulations of crowds as described in [19], which gives a
comprehensive survey of the techniques and requirements
for simulating large-scale virtual human populations ranging
from computational crowd models to functional models of
human behaviour. [17] uses a distributed random behavioural
model but uses simple vector analysis to avoid collisions.
[20] addresses the problem of real-time virtual environments
and develops a control model for local motions and a global
path planning algorithm in such circumstances. They use both
psychological attributes and geometrical rules like distance,
areas of influence, and relative angles, to eliminate artifacts.
Others have gone further; e.g., [7, 8] used particle systems and
dynamics for modeling the motion of groups with physics.
Specifically, using a point-mass system model, their group
behaviour algorithm computed goal positions for individu-
als based on the current positions and velocities of their
neighbours, obstacles, and the global desired group velocity,
as shown in Figure 3. They went further and reproduced
movements of legged robots, bicycle riders and point-mass
systems based on basic dynamics.

[5] modeled people as a set of interactive particles and
then adapted the use of particle systems for studying crowd
movements. Their model for the motion of individuals utilizes
Newtonian forces but also incorporates human goals and
decisions. Their concept of the decision charge of a person
interacting with a surrounding decision field was modelled
after the way an electric charge is influenced by an electric
field. Their model for crowd simulation in immersive space
management used particle systems as a generic model for
simulations of dynamic systems.

[9] describes methods to simulate the movement of pedes-
trians based on a social force model which is a microscopic
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Fig. 2. (a) Dense Optical Flow; (b) Computed Point Flow Field; and (c) Sink Seeking Process from [4].

(personal) approach for simulating pedestrian motion. In their
approach, they solve Newton’s equation for each individual
and consider repulsive interactions, friction forces, dissipation
and fluctuations. [6] builds upon the Helbing model [9] and
generalizes it to deal with different individualities for agent
and group behaviours. The fundamental dynamical equation
they utilize for varying velocity,v, with forces, f , and direc-
tion, e, over a certain time interval, τ , is:

mi
dvi
dt

= mi
vi(t)ei(t)− vi(t)

τi
+
∑
i 6=j

fij +
∑

fiw (2)

The left side of this equation computes the net force
(following Newton’s Third Law of Motion) as mass (mi) times
acceleration, where the acceleration, a = dvi

dt , which is used to
computer the change in velocity, v. The velocity, in turn, can
be used to computer the change of position, r(t), as v(t) = dr

dt .

Fig. 3. Positions of the other visible members of the group (called creatures
in their simulations) is used to compute global desired positions for each
individual in [7].

The Helbing model is based on physics and also uses
socio-physiological forces to describe human behavior in panic
situations using particle systems. The use of particle systems,
however, harkens back to [21], who first developed a model for
simulating a school of fish and a flock of birds using a particle
systems method. Particle systems were used to represent

simulated birds as particles and their aggregate motion was
created by a behavioural model where each individual bird
navigates according to its own local dynamic environment and
dictated by the simulated physics of motion.

V. CONCLUSION

In this paper we have reviewed some of the more pertinent
work in group and crowd analysis that utilize physics methods
to varying extent. We have classified these different approaches
as dealing with group analysis, crowd analysis, or crowd
simulation. In our review, we identified a large corpus of
research and selected some of the more representative papers.
Although this paper reveals important progress made in the
field of physics-based methods for group and crowd analysis,
we intend to expand this review into a more comprehensive
survey in the future.

Important issues that still need to be addressed in future
work are identifying significant datasets for group and crowd
analysis, elaboration of abnormality detection, and surveying
the social force and behavioural models that are also utilized
in crowd analysis. One of the most significant problems
facing group and crowd analysis, however, is the dearth of
widely-available, realistic datasets. There is a glaring need for
datasets that address specific actions like group formation and
fundamental, atomic group actions, as well as realistic footage
of surveillance, sports actions, movies, and other such video
data from the Internet. Identifying, creating, and analyzing
such datasets will no doubt challenge the current state-of-the-
art in group and crowd analysis.
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