
PostDoc Journal
Vol. 1 No. 1, January 2013

Journal of Postdoctoral Research
www.postdocjournal.com
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Complex gene regulatory networks, not individual genes, control cellular func-
tion. Genes and gene products act together to determine cellular phenotypes.
Estimation of these networks is necessary to understand cellular mechanisms,
detect differences in gene regulation between cell types, and predict cellular re-
sponse to interventions. A plethora of algorithms have been developed to infer
network structure from experimental data. Here we provide a general introduc-
tion to the estimation of gene regulatory networks and the classes of proposed
algorithms.

Introduction

The central dogma of molecular biology states that
information flows from DNA to RNA to proteins.
While each of the cells of a complex organism con-
tain the same DNA, different regions of DNA, called
genes, can be transcribed into RNA and translated
into proteins. This allows cells from different parts
of the body to perform different tasks and an indi-
vidual cell to alter its behavior in response to stim-
uli.

There are several techniques commonly used to
measure gene expression. Many of these techniques
rely on the hybridization of single-stranded DNA
and RNA molecules, in which two complementary
strands of DNA or RNA will bind to each other.
This allows one to isolate a specific target from a
mixture of DNA and/or RNA by designing a probe
that is complementary to a specific region of the
target molecule.

One of the first techniques used to measure gene
expression was a northern blot, in which the expres-
sion of a single gene is assessed by examining the
amount of RNA that binds to a labeled probe de-
signed to perfectly complement a region of the tar-
get gene. The primary drawbacks of Northern blot-
ting are that only a single RNA can be measured
at a time and quantification of expression is based
solely on visual examination of an image (Taniguchi
et al., 2001). An alternative approach is reverse
transcription polymerase chain reaction (RT-PCR),
in which a target RNA is reverse transcribed into
cDNA, amplified (repeatedly replicated), and then
measured. Quantification of expression is based

on either the number of amplifications needed to
achieve a predetermined threshold or via examina-
tion of the amplification curve (Bustin, 2005).

Recently, the measurement of gene expression
has shifted to high-throughput methods, in which
the expression of thousands of genes are mea-
sured simultaneously. The most widely used high-
throughput technology to measure gene expression
is the DNA microarray. A microarray typically con-
tains thousands (sometimes millions) of probes each
designed to hybridize to specific RNA molecules.
Often millions of copies of each probe are present
on a single microarray. Labelled RNA is then al-
lowed to hybridize to the probes on the microar-
ray, and the amount of each RNA present in the
sample is quantified by the amount that hybridizes
to the microarray. While microarrays provide a
wealth of information, numerious statistical tech-
niques were required to address various biases in
this technology (Li and Wong, 2001; Irizarry et al.,
2003; Wu et al., 2004; McCall et al., 2010). An al-
ternative to DNA microarrays is RNA-sequencing,
which determines the order of nucleotides within
an RNA molecule. The application of sequencing
techniques to measuring gene expression was ex-
tremely costly and time-consuming prior to recent
advances in sequencing technology. These recent
advances in sequencing techniques, termed second-
generation sequencing, have made RNA-sequencing
a viable method to measure high-throughput gene
expression.

Over the past decade, numerous genes whose ex-
pression differs between conditions (tumor/normal,
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treated/untreated, etc.) have been reported. How-
ever, genes do not function in isolation, rather they
act together in complex networks that drive cellular
function. By considering the interactions between
genes (and gene products), we gain a much deeper
understanding of the underlying cellular mecha-
nisms. For example, recent cancer research sug-
gests that malignant transformation is the result of
drastic changes in genetic networks critical to nor-
mal cellular function (Lloyd et al., 1997; McMur-
ray et al., 2008; Xia and Land, 2007). Research
aiming at the identification of intervention targets
requires a detailed understanding of the gene reg-
ulatory networks present in a normal cell and the
changes brought about by malignant transforma-
tion. Understanding of complex genetic networks
has the potential to advance fields ranging from ba-
sic science research to clinical practice. Examina-
tion of cellular networks has provided insights in
evolution (Isalan et al., 2008), metabolism (Ideker
et al., 2001), DNA damage response (Bandyopad-
hyay et al., 2010), and cancer metastasis (Chuang
et al., 2007).

In its most general form, a network consists of
nodes and edges. What the nodes and edges sig-
nify determines the type of network. There are
several types of cellular networks – e.g. metabolic
networks, cell signaling networks, gene regulatory
networks. In this article, we will restrict our focus
to gene regulatory networks. Because genes encode
proteins which are responsible for the vast major-
ity of cellular function, networks that control which
genes are expressed (transcribed into mRNA then
translated into proteins) indirectly regulate the ma-
jority of cellular function. In a gene regulatory
network, nodes represent genes and edges represent
regulatory relationships.

The regulation of one gene by another is not
carried out directly, rather the regulator encodes a
protein that performs the regulation. This regula-
tion can take many forms depending on the protein
encoded. Proteins that bind to a specific DNA se-
quence and either increase or decrease transcription
of a gene are called transcription factors. Transcrip-
tion factors typically function by aiding or inhibit-
ing the binding of RNA polymerase, the enzyme
that transcribes DNA to RNA. Other proteins regu-
late gene expression without binding to DNA. These
include proteins that are involved in chromatin re-
modeling, acetylation, or methylation. These result

in changes in the accessibility of regions of DNA,
and thereby changes in gene expression.

Input Data

Several types of data can be used to estimate gene
regulatory networks. The type of input data often
drives the choice of network to be estimated and the
algorithm used to infer the network structure. The
two most common types of data used to infer net-
work structure are gene expression across biological
replicates and gene expression after an experimen-
tal perturbation. For the former, the central idea
is that genes that display similar expression profiles
are coregulated. For the latter, one seeks to deter-
mine which genes respond to the perturbation of
another gene.

From early knock-out experiments in Saccha-
romyces cerevisiae (Ideker et al., 2001; Winzeler
et al., 1999) to RNAi and shRNA experiments in
Caenorhabditis elegans, Drosophila melanogaster,
mouse and human (Amit et al., 2009; Boutros and
Ahringer, 2008; Fuchs and Boutros, 2006; Ivanova
et al., 2006; Moffat and Sabatini, 2006), perturba-
tion experiments have been used to better under-
stand how cells function, to differentiate between
diseased and normal cells, and to provide potential
targets for intervention. While difficult and time-
consuming, perturbation experiments have been
shown to result in more reliable network recon-
structions (Markowetz and Spang, 2003; Werhli
et al., 2006; Zak et al., 2003). They also provide
a straight-forward method to predict cellular re-
sponse to intervention(s), allowing researchers to
determine potential targets to produce a desired
outcome. For example, if one could find an in-
tervention target that results in apoptosis for gene
networks present in a specific type of cancer and
absent in normal cells, one could preferentially kill
malignant cells.

In addition to be time-consuming and difficult
to perform, perturbation experiments typically al-
ter the gene regulatory network itself. For example,
a persistent perturbation, in which a target gene
is constitutively expressed, will result in a network
in which any down-regulation of the target gene is
masked. Algorithms should explicitly model this
difference between the perturbed and the unper-
turbed network. Failing to do so may result in in-
accurate modeling of the interactions present in the
unperturbed cell.
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Gene Connectivity Networks

Perhaps the simplest gene network is a connectiv-
ity network in which nodes are labeled by genes
and an edge exists between two genes if there is an
interaction between them. Such a network is said
to be directed if the edges imply a causal relation-
ship. In a directed network in which an edge goes
from node i to node j, node i is called a parent of
node j and node j is called an offspring of node i.
While an undirected relationship simply states that
two nodes are closely related, a directed relation-
ship has a clear biological interpretation – the par-
ent node regulates the offspring node. A directed
network can be further classified as cyclic or acyclic
depending on whether cycles exist (Figure 1).
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Figure 1: A three gene network showing the
different types of connectivity networks.

A connectivity network can easily encoded in an
adjacency matrix, A, where

Aij =

{
1 if (i, j) ∈ E, the set of all edges

0 otherwise

For an undirected network, A will be symmetric.
For a directed network, one can let the columns
represent parents and the rows represent children,
such that Aij = 1 denotes that j is a parent of i.

A connectivity network can be generated from
expression across biological replicates, in which
case, the connectivity network is undirected with
edges connecting genes with similar expression pro-
files. A connectivity network can also be created
from perturbation experiments in which gene ex-
pression is assessed following experimental pertur-
bation of a target gene. In this case, the connec-
tivity network is directed with edges representing a
change in the offspring gene following perturbation
of the parent gene.

It is important to note that even a directed con-
nectivity graph does not convey any information re-
garding the form of regulation between genes. For

example, in the directed acyclic graph shown in Fig-
ure 1, it is unclear what functional form describes
the dependence of gene 3 on genes 1 and 2. It is
possible that expression of gene 3 requires the ex-
pression of both gene 1 and gene 2 or either could
suffice. Moreover, the expression of gene 3 might
be a continuous function of the expression of genes
1 and 2.

Coexpression Networks

Coexpression networks are generated from gene ex-
pression data by computing a measure of coexpres-
sion between pairs of genes. Genes that are highly
coexpressed are assumed to be proximal in a gene
regulatory network and genes that are lowly coex-
pressed distal. Typically, a threshold is used to de-
termine whether an edge exists between two nodes
– e.g. a correlation greater than 0.6 results in an
edge. This typically results in an undirected net-
work. Although coexpression cannot directly dis-
tinguish between direct and indirect interactions, it
is typically assumed that directly interacting genes
will have greater coexpression than indirectly inter-
acting genes.

Coexpression can be measured in many differ-
ent ways. The simplest and perhaps most widely
used measure is correlation, which assesses the lin-
ear dependence between two genes. However, its
inability to detect non-linear dependence makes it
less suitable for more complex gene regulatory re-
lationships. An alternative that is able to detect
non-linear relationships is the mutual information
(MI) (Butte and Kohane, 2000, 2003). Mutual in-
formaiton is defined as follows:

MI(AB) = H(A) +H(B)−H(AB)

where H(A) is the entropy of gene A, H(B) is the
entropy of gene B, and H(AB) is the entropy of the
joint distribution of genes A and B.

Whether one uses correlation or mutual infor-
mation, to generate a network from coexpression
data, one must decide on a threshold above which
an edge will be inferred. Because coexpression is
measured continuously, every gene pair will have a
non-zero value. Furthermore, as previously men-
tioned, coexpression networks work on the assump-
tion that direct interactions will have higher co-
expression than indirect interactions; therefore, a
network generated by a thresholding procedure will
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likely be dominated by direct interactions. For ex-
ample, a network could be constructed by accepting
edges associated with a correlation coefficient > 0.6
as in Zhou et al. (2002). A more rigorous approach
would be to assess the signifance of coexpression
measures via a permutation test in which one re-
peatedly randomly permutes the ordering of genes
within replications and recalculates the coexpres-
sion measures. The permutation replicants form a
null distribution that can be used to assess signifi-
cance (Butte et al., 2000).

One of the primary challenges of this type of
analysis is obtaining enough biological variability.
Because the data consist of biological replicates,
one must rely on subtle changes in gene expression
to observe correlation between genes. Furthermore,
the potential for technical variability to outweigh bi-
ological variability may result in a significant num-
ber of false positives. However, this type of net-
work modeling has been successfully used to inves-
tigate functional relationships between gene expres-
sion and susceptibility to chemotherapeutic agents
(Butte et al., 2000) and examine regulatory net-
works in human B cells (Basso et al., 2005).

Deterministic Networks

The simplest deterministic network is a Boolean
Network in which nodes take on a value of either
zero (unexpressed) or one (expressed). This model
was originally introduced by Kauffman (1969).
While discretizing gene expression is certainly a
simplification, similar approaches have resulted in
increased reproducibility and robustness when es-
timating both absolute and differential gene ex-
pression (McCall et al., 2011; Parmigiani et al.,
2002; Scharpf et al., 2003; Zilliox and Irizarry, 2007)
and have been used to correctly classify tumor
types (Shmulevich and Zhang, 2002). Moreover,
Boolean network models have been used to success-
fully model gene regulatory networks involved in the
yeast cell-cycle (Li et al., 2004; Davidich and Born-
holdt, 2008), cell-fate in Arabidopsis (Espinosa-
Soto et al., 2004), and the mammalian cell-cycle
(Faure et al., 2006).

Boolean networks are dynamic, meaning that
they are governed by transition functions that take
as input the current network state, i.e. which nodes
are on (1) and which are off (0), and determine
the subsequent states. They are also determinis-
tic, meaning that the transition functions do not

change. One can begin from any initial state and it-
eratively apply the transition functions until a state
is repeated. Because the model is deterministic,
once a state is repeated the network will continu-
ally cycle through the same sequence of states. This
sequence of states is called an attractor, and an at-
tractor that consists of only one state is called a
fixed point. The set of initial states that lead to a
given attractor is called its basin of attraction.
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Figure 2: A five gene network where nodes repre-
sent genes and edges represent positive-regulation
(arrows) or negative-regulation (squares). Note
that this graph does not convey all of the necessary
information – it is unclear whether expression of
gene 2 requires expression of both genes 1 and 4
or whether either will suffice.

Considering the network in Figure 2, we can de-
fine a Boolean network as follows: gene 1 not reg-
ulated by any of the other 4 genes; gene 2 will be
expressed if either gene 1 or gene 4 is expressed,
otherwise it will remain unexpressed; gene 3 will be
expressed if either gene 2 or gene 4 is expressed;
gene 5 will be expressed if gene 4 is unexpressed.
Note there are two primary attractors: (1) genes 1-
4 unexpressed and gene 5 expressed, and (2) genes
2-4 expressed and genes 1 & 5 unexpressed. One
can show that any initial state will result in one
of these attractors, and once either of these states
is reached, the network will remain in that state.
In other words, both of these attractors are fixed
points.

In addition to being a convienent modeling tool,
there is growing evidence that attractors are present
in cellular networks (Chang et al., 2008; Huang
et al., 2005). One can view attractors as the de-
terminants of cell type and functional state (e.g.
liver cell during proliferation); cells are able to shift
from one functional state attractor to another but
not between cell type attractors. Such a view also
provides potential insight into cancer, which can be
viewed as cells spending too much time in a prolif-
eration state and not entering the apoptosis state
(Huang, 2001). This could potentially be the re-
sult of altered basins of attraction for these states
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(Shmulevich and Aitchison, 2009). Basins of at-
traction can also be viewed as representing the ro-
bustness of a gene regulatory network. Transient
perturbations, in which a target gene is altered but
then allowed to revert to its former state, typically
result in a transition within the original basin of
attraction, meaning that the network will revert to
the same attractor (Huang, 1999).

The fundamental Boolean network inference
problem is finding transition functions that explain
the observed data. The observed data are typi-
cally steady state measurements, representing ex-
pression once an attractor has been reached, al-
though time course data are occasionally used. For
genes whose expression is constant within the at-
tractor, the steady state data will reflect this level
of expression. For genes whose expression varies
within the attractor, the data will represent a sum-
mary over the expression states. Therefore, one
can view the inference problem as selecting tran-
sition functions constrained by the observed attrac-
tor summaries. If logical inconsistencies exist due
to errors in the data, there may not exist such a set
of transition functions. On the other hand, there
may be multiple sets of transition functions that are
able to explain the observed data. While previous
work approached these challenges through “best-
fit” solutions and parsimony (Liang et al., 1998;
Akutsu et al., 1999; Ideker et al., 2000; Maki et al.,
2001; Shmulevich et al., 2003; Lahdesmaki et al.,
2003), recent work has proposed explicitly modeling
this uncertainty via a posterior density (Almudevar
et al., 2011).

Another approach is to use the Coefficient of
Determination (Dougherty et al., 2000). The co-
efficient of determination measures the extent to
which the expression of a given gene can be pre-
dicted by the expression of another set of genes. For
a Boolean network, the coefficient of determination
can be formulated as follows:

θi =
εi − ε
εi

where εi is the error from the best estimate of gene i
in the absence of information from other genes and
ε is the error from the optimal predictor of gene i
based on all other genes. Note that 0 ≤ θi ≤ 1 with
θi = 0 when using information from other genes re-
sults in no improvement and increasing values of θi
corresponding to greater reductions in error when
using other genes to predict gene i. In practice,

θi is unknown but can be estimated from training
data; however, this process is computationally in-
tensive for data in which a large number of genes
are measured (Shmulevich and Dougherty, 2007).

One challenge in Boolean network inference is
estimation of the initial state (Lee and Tzou, 2009).
While there have been recent efforts to estimate ab-
solute gene expression from microarray data (Mc-
Call et al., 2011) and RNA-sequencing (Mortazavi
et al., 2008), estimates of differential gene expres-
sion are typically far more reliable because technical
artifacts, such as probe-effects in microarray data,
often cancel out. For this reason, it is often ad-
vantageous to assess gene expression from pertur-
bation experiments relative to gene expression in
unperturbed cells. For perturbation experiments in
which gene expression has been assessed in unper-
turbed control cells, Boolean network models can
be naturally extended to ternary network models
by defining states as follows: under-expression (-
1), baseline expression (0), and over-expression (1).
This allows one to use estimates of differential ex-
pression to discretize gene expression (Kim et al.,
2000).

Another criticism of Boolean networks is that
the transition functions are typically applied to each
node simultaneously. This is typically referred to
as a synchronous network. Such a model may not
be biologically plausible, since some genes may re-
sponse far more quickly to their regulators than oth-
ers. A simple solution to this criticism is to allow
nodes to update asynchronously or to remove the
notion of discrete time completely via a continuous
time boolean network (Öktem et al., 2003). Finally,
one can incorporate cellular dynamics via differen-
tial equations models to potentially better approxi-
mate actual cellular networks; however, these mod-
els are often very complex and require additional
information, specifically kinetic constants.

Stochastic Networks

Unlike deterministic networks, stochastic networks
view the network structure as random in nature.
The majority of deterministic networks can be mod-
ified to add a random component thereby making
them stochastic. For example, a Boolean network
can be modified such that at each iteration, one of
several transition functions is chosen probabilisticly
for a given node.

The most widely used stochastic network is a
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Bayesian network. A Bayesian network is defined
by a set of nodes which are viewed as random vari-
ables and a set of directed edges which are spec-
ified by conditional probabilities. The values of
the nodes can be either continuous or discrete de-
pending on the form of the conditional probabilities.
However, a Bayesian network must be acyclic. This
is perhaps the greatest drawback to the application
of Bayesian networks to cellular regulation because
cells contain numerous feedback loops.
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Figure 3: A five gene Bayesian network where
nodes represent genes and edges represent regula-
tory relationships.

For a Bayesian network such as the one show
in Figure 3, the graph contains relatively little in-
formation – only which genes regulate which other
genes. The network itself is specified by the con-
ditional probabilities that describe the regulatory
relationships. For example, the network shown in
Figure 3 could be described by the following condi-
tional probabilities:

P (G1 = 1) = 0.2

P (G2 = 1 | G1, G4) = 0.7 ∗ 1(G1 = 1, G4 = 1)

P (G3 = 1 | G1, G5) = 0.3 ∗ 1(G1 = 1, G5 = 0)

P (G4 = 1) = 0.9

P (G5 = 1 | G4) = 0.1 + 0.6 ∗ 1(G4 = 1)

Like the Boolean network described above, the
genes in this network only take on values of zero
(unexpressed) or one (expressed), but unlike the
Boolean network, the expression of the genes in this
network are stochastic. For example, expression of
gene 4 increased the probability that gene 5 is ex-
pressed (by 0.6), but it does not guarentee that gene
5 will be expressed.

One method to create a cyclic Bayesian Network
is to include a time component such that the condi-
tional probabilities governing each node are allowed
to change over time. This results in a Dynamic
Bayesian Network (Murphy et al., 1999), which al-
lows the network to incorporate regulatory feedback
via cycles that exist over time.

A stochastic version of a Boolean Network,
called a Probabilistic Boolean Network, was origi-

nally proposed to deal with uncertainty in infer-
ring Boolean Networks from relatively noisy data
and small sample sizes (Shmulevich and Dougherty,
2007). To address the potential error in inferring
network structure from the observed data, the tran-
sition functions are chosen probabilisticly. That is,
a Probabilistic Boolean Network extends a Boolean
Network by allowing each node to be governed by
more than one transition function. When updating
a node, the transition function used is determined
randomly from a set of possible transition functions.
This random selection can be weighted toward more
likely functions or can be reweighted based upon the
functions chosen for other nodes. If one uses coef-
ficients of determination to select transition func-
tions, one can also use the coefficient of determi-
nation to weight the probability of each transition
function being employed (Shmulevich et al., 2002).

Stochastic networks, particularly Bayesian net-
works, have seen fairly extensive application in ge-
nomic biology. For example, they have been used
to investigate Her2 signaling in breast cancer (Bose
et al., 2006) and as part of an integrated approach to
discover genes driving cancer (Akavia et al., 2010).

Network Inference

Many network inference algorithms function by
scoring potential models and selecting models with
a better score. Such a score is a function of the
model and the data with models that better reflect
the observed data scoring better. Because one is of-
ten comparing models of different complexitity, it is
standard to include a penalty for added complexity
– the score then contains a component representing
how well the model matches the data and a penalty
for model complexity. This controls over-fitting be-
cause for any given model, it is almost always pos-
sible to find a more complex model that performs
as well or better.

One major challenge in inferring gene regulatory
networks is that the number of genes (nodes) typ-
ically far exceeds the number of samples – e.g. in
genomic data one typically measures tens of thou-
sands of genes but with at most hundreds of sam-
ples. One approach to reduce the model space is to
restrict the complexity of the network – for exam-
ple, by limiting the maximum number of regulators
of any gene or searching for a small set of genes
that explain the majority of the observed expres-
sion (Pe’er et al., 2002). An alternative approach
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to reduce the model space is to group genes into
gene sets that are collectively regulated, reducing
the number of nodes (Segal et al., 2003).

Even after employing algorithms to reduce the
model space, the number of possible networks is
often still too large to score every possible net-
work in a reasonable amount of time. Moreover,
the set of networks compatible with the data can
be very large and may contain networks with very
different structure. Nonetheless, a single network
that optimizes some criterion, e.g. minimizing the
number of differences between observed and pre-
dicted attractors or maximizing parsimony (Ideker
et al., 2000; Lahdesmaki et al., 2003), is typically re-
ported. However, a single network that completely
explains the observed data often does not exist – er-
rors in the input data producing logical inconsisten-
cies may preclude any network perfectly fitting the
observed data. On the other hand, when solutions
do exist they will rarely be unique. In other words,
in the absence of logical inconsistencies, there are
often multiple networks that explain the observed
data. Therefore, the model space is typically ex-
plored using complex search algorithms to construct
a posterior distribution on the model space. These
methods often rely on simulated sampling, typi-
cally Markov Chain Monte Carcl (MCMC) sam-
plers. The feasibility of this approach has been
demonstrated for Bayesian networks (Friedman and
Koller, 2003) and Boolean networks (Almudevar
et al., 2011).

Conclusions

Over the past decade, advances in the estimation of
gene regulatory networks have lead to an increased
understanding of cellular regulation. In particular,
the increased use of targeted gene perturbation ex-
periments promises richer data regarding the cellu-
lar processes involved in a wide variety of diseases
and the potential to design targeted interventions.
However, additional methodological advances are
still needed as current network estimation algo-
rithms are unable to adequately reconstruct gene
networks from gene expression data alone (Marbach
et al., 2010). In particular, many network estima-
tion algorithms struggle to accurately detect com-
plex multi-gene regulatory relationships.

One possible path forward is to supplement
gene expression data with additional information.
This additional information can be measurements of

transcription factor binding via Chip-chip or Chip-
seq (Hartemink et al., 2002), protein-protein inter-
actions (Imoto et al., 2004), or even literature min-
ing (Haibe-Kains et al., 2012). Combining these
additional data sources with gene expression data,
ideally following targeted perturbations, may allow
researchers to uncover the complex networks that
govern cellular processes.
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