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Mechanical instability of elastic rods has been subjected to extensive investigations and demon-
strated fundamental roles in cytoskeletal mechanics and morphogenesis. Utilizing mechanical insta-
bility also has great potentials in engineering applications such as stretchable electronics. Here in
this review, the fundamental theory underlying twisting and buckling instability of thin elastic rods
is described. We then bridge together recent progresses in both theoretical and experimental stud-
ies on the topic. The promises and challenges in future studies of large deformation and buckling
instability of thin rods are also discussed.

INTRODUCTION

The study of mechanical instability of rods can be
dated back to Swiss mathematician Leonhard Euler in
1744 [1], and has been revived in the past few decades
due to the ubiquitous and nontrivial nature of relevant
phenomena. In fact, such nonlinear behaviors of rods
are manifested in many systems both in nature and in
engineering structures, including the growth of plant
roots [2, 3], vines and tendrils [4], the mechanics of DNA
[5], the twisting of tubes such as oil pipes [6–9], arteries
and veins [10, 11], the twisting of cables such as stent
guide wires [12, 13] and phone cords, nanoribbons and
nanowires [14, 15], and the buckling of microtubules in
cell cytoskeletons [16–18]. Fig. 1 shows some of these
structures.

Euler did the first systematic study on planar buckling
of rods [1], and proposed that buckling can occur with
multiple wiggles (associated with an arbitrary mode
number n), and the critical load scales as n2. In reality,
however, only mode 1 is energetically favorable in the
absence of lateral support. Recently, Brangwynne et
al. [16] showed that higher order modes appear when
the rod is embedded in an elastic medium, leading to
enhanced load bearing capability, which successfully
explains the fact that microtubules act as the stiffest
load-bearing filaments within cells.

The last two decades has seen increased interests in vari-
ants of this mechanics problem. For instance, buckling of
rods or thin sheets with extra support from a surrounding
medium received great attention due to potential applica-
tion in bio-inspired design and soft/stretchable electron-
ics [14, 15, 17–21]. In such a composite structure, the
total free energy of the system under buckling load also
incorporates that of the deformed surrounding medium.
This extra support promotes the occurrence of higher or-
der buckling modes predicted in conventional Euler buck-
ling.

FIG. 1: Buckling patterns in natural and engineer-
ing systems. (a) Circumnutation models for the wavy-
root of seedlings that grow on top of a tilted 1.5% agar
medium. In one model, the root grows in a right-handed
manner (a1), with the micrographs viewed from the top
(a2) or from the right side (a3), while in the other model,
each wave is formed alternatively by left-handed and
right-handed parts (a4) [3]. (b) GaAs nanoribbons at-
tached to pre-stretched PDMS substrate with patterned
adhesive sites form buckling patterns under compressive
loads [14]. (c) Buckling patterns of microtubules in a cap-
illary cell that expresses EGFP-tubulin due to cell con-
tractility (the inset being a high magnification image).
Scale bar is 5 µm [16]. (d) AFM images of deformed Si
NWs on the PDMS substrate at different treatment times
of (d1) 0 min, (d2) 3 min, (d3) 5 min, (d4) 8 min, and (d5)
20 min. The prestrains were all set to be 20%. Scale bar
is 1 µm [15]. Images (a) (b) (c) (d) adapted from [3], [14],
[16], and [15], with permission from American Society of
Plant Biologists ( c© American Society of Plant Biologists
1996), Nature Publishing Group ( c© Nature Publishing
Group 2006), Rockefeller University Press, and American
Chemical Society ( c© American Chemical Society 2011),
respectively.
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Another key topic is buckling of thin rods on the
nanoscale [22–39]. As the applications of nanowires
and nanotubes increase in nano-electrical mechanical
systems and biotechnologies [40], such as AFM probes
and shear sensors [41], there have been increasing inves-
tigations on the mechanical behavior of these nanoscale
structures. When the length scale goes down to a few
hundred nanometers or less, surface effects of the rod
becomes non-negligible and have to be accounted for
in the description of the total energy potential of the
buckling rod [34–37, 42]. This effect often translates
into size-dependent mechanical properties, which are
typically distinct from those on the macro/micro scales
[43–47].

In this review, we first present the classical theoretical
description of elastic thin rod buckling. We then update
on the recent theoretical and experimental progresses in
the area of large deformation and buckling instability of
thin elastic rods. Lastly, perspectives and concluding
remarks are presented.

THEORY

First we give a quick review of the classical linear
elasticity theory about large deformation and instability
of rods, where Euler buckling is introduced as a special
case for the general treatment. Here, the term “large
deformation” refers to the large deformation where the
strains are still small such that linear elasticity theory
still applies. To gain a more comprehensive treatise,
the readers are recommended to refer to the books by
Landau and Lifshitz [1], Love [48] and Timoshenko [49].

Once the classical theory is set, we then move to the the-
oretical description for short wavelength buckling within
medium providing linear and nonlinear elastic support
and buckling of rods on the nanoscale.

Bending and twisting of rods

Following Landau and Lifshitz [1], we describe the gen-
eral large deflection of Kirchhoff rods as a combination of
bending and twisting (a Kirchhoff rod is assumed to be
inextensible and unshearable). The rod is divided into
infinitesimal elements, each bounded by the two adjacent
cross sections. Within each element, a coordinate system
{dx,dy,dz} is designated such that in all the systems
they are parallel in the undeformed configuration, and
the dz axes are along the tangent direction of the
rod. As the rod deforms, these coordinate systems will
rotate with respect to each other, and any two adjacent
coordinate systems are rotated by an infinitesimal angle.
Let dQ denote the vector of the relative angular rotation

of two consecutive systems at a distance ds apart, and
the rate of rotation is defined as Ω = dQ/ds.

Take a unit vector dt tangential to the rod, then dt/ds is
the curvature vector with the curvature |dt/ds| = 1/R,
where R denotes the local radius of curvature of the seg-
ment, and the direction is that of the principal normal
(n) to the curve at that point. The change of vector
t between the two consecutive elements is equal to the
cross product of the rotation vector and the vector t it-
self, dt/ds = Ω × t. Take the vector product with t we
get:

Ω = t× dt

ds
+ t(t ·Ω) = t× κn + τt, (1)

where κ = 1/R is the curvature and τ = t ·Ω is the twist.
In linear elasticity, the moment vector M has the follow-
ing components, M1 = EI1κ1, M2 = EI2κ2 , M3 = GJτ ,
where I1 and I2 are the principal moments of inertia, J is
the torsional moment of inertia and GJ denotes the twist
rigidity of the rod. The elastic energy of the deflected rod
is:
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Mechanical equilibrium of rods

We consider the equations of equilibrium of a de-
flected rod of length L. The force balance is given
by dT/ds = −K, where T and K denote the internal
resultant stress and the external force per unit length on
the rod respectively, and s is the arclength (going from 0
to L). In equilibrium, the moment balance is described
by dM(s)/ds = T × t(s), where M(s) is the moment
and t(s) denotes the tangent vector along the rod.

In the cases where the external forces are concentrated,
i.e., the applied forces are only acting on discrete points
of the rod, the equations can be greatly simplified. It
can be shown that for a rod with a circular cross-section,
the moment M(s) satisfies M(s) = EIt(s)× dt(s)/ds+
GJτt(s). When there are no twisting moments applied
to the ends, the equation of equilibrium for pure bending
can be simplified to:

EI
dr(s)

ds
× d3r(s)

ds3
= F × dr(s)

ds
. (3)

For small deflection of rods, the equations of equilibrium
can be considerably simplified. The case considered here
is when the direction of the tangent vector t to the rod
varies very slowly along the length (i.e., the slope is
very small). Typically, the radius of curvature is large
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compared with the length of the rod, and the transverse
displacement of the rod is much smaller than its length.

In the case where the rod is strongly compressed (under
a force T exceeding a certain threshold), the governing
equation is re-written in its component form (but neglect-
ing Fx and Fy):

EI2X
′′′′ − TX ′′ −Kx = 0,

EI1Y
′′′′ − TY ′′ −Ky = 0.

(4)

For a rod with hinged ends, the boundary conditions are
X = Y = 0, X ′′ = Y ′′ = 0, while for a rod with
clamped ends, X = Y = 0, X ′ = Y ′ = 0. Finally,
for a free end, the force and moment have to vanish.
Accordingly, the boundary conditions read X ′′ = Y ′′ =
0, X ′′′ = Y ′′′ = 0.

Planar buckling instability of an elastic rod

When there are no transverse forces Kx and Ky, Eqns.
(4) have the trivial solution X = Y = 0, suggesting
that the rod remains straight under a longitudinal
compressive force T . However, this solution only gives
a stable equilibrium of the rod when the magnitude of
the compressive force |T | is below a certain threshold
value Tc. When |T | < Tc, the straight rod is stable with
respect to any small perturbation of the equilibrium
shape. In other words, if the rod leaves the equilibrium
shape by a small displacement, it has a natural tendency
to go back to the original configuration to lower the
total potential energy.

If, however, |T | > Tc, the straight configuration be-
comes unstable. Any small perturbation will suffice to
disrupt the equilibrium configuration, resulting in a non-
negligible bending of the rod with a new equilibrium
shape. When |T | = Tc, the straight shape of the rod
is in neutral equilibrium, which suggests that there are
also states where the rod is bent slightly but still in me-
chanical equilibrium besides the straight configuration.
Therefore, the critical value, Tc, is the value of |T | such
that there exists a non-trivial solution for the following
equations:

EI2X
′′′′ + |T |X ′′ = 0, EI1Y

′′′′ + |T |Y ′′ = 0. (5)

This solution also depicts the shape of the deformed
rod in a new equilibrium state after it ceases to remain
straight.

Now we consider the classical problem of buckling, i.e.,
what is the critical compression force for a rod with
hinged ends. An alternative description is to seek the
smallest value of |T | such that Eqns. (5) possess a non-
trivial solution. Hence it suffices to consider just the

equation that contains the smaller of I1 and I2. With-
out a loss of generality, suppose I2 < I1, then we may
seek a solution of the equation EI2X

′′′′ + |T |X ′′ = 0
in the form X = A + Bz + C sin qz + D cos qz, where
q =

√
|T |/EI2. For conciseness, we drop the subscript

“2” hereafter. The non-zero solution which satisfies the
boundary conditions X = X ′′ = 0 for z = 0 and z = l
is X = C sin qz. Thereby we find that the critical force
for the Euler buckling load with hinged boundary con-

ditions is Tc = π2EI
L2 . If both ends are clamped, then in

a similar fashion, the critical force can be derived to be
Tc = 4π2EI/L2. Thus the critical buckling load can be
written as:

Tc = η
π2EI

L2
, (6)

where η depends on the boundary and loading conditions.

(a)

(b)

FIG. 2: Numerical results of the deformation of a
stiff elastic rod embedded in a nonlinearly elas-
tic medium. (a) The exponentially decaying buckling
pattern. (b) the decay length as a function of the longi-
tudinal coupling parameter, α‖ and the bending rigidity
κ [17]. Reproduction of images (a), (b) from [17] with
permission from IOP Science ( c© IOP Science 2008).

Planar Buckling instability of a rod in elastic media

For a rod that sustains compressive loading from one end
and buckles in an elastic medium, one can write down the



4 Journal of Postdoctoral Research February 2013: 1-8

energy functional for small deflections [17]:

Π = −fv(0)

+

∫ ∞
0

[
κ

2
u′′2(x) +

1

2
α⊥u

2(x) +
1

2
α‖v

2(x) +
1

4
βu4(x)]dx,

(7)

where f is a compressive load imposed at the free end
(x = 0), u(x) and v(x) =

∫∞
x

ds 12u
′(s)2 denote the rod’s

transverse and longitudinal displacements, respectively.
The elastic coupling parameters α⊥ and α‖ are dictated
by the rod’s dimensions and the gel’s elastic properties.
For a straight rod of length L embedded in an elastic
medium, α⊥ ≈ 4πG/ ln(2L/d) and α‖ = α⊥/2 [50, 51]
are the transverse and longitudinal coupling coefficients
respectively, and β is the coupling constant for the
nonlinear elastic energy.

Based on this model, Das et al. [17] theoretically in-
vestigated the mechanical buckling of an elastic filament
embedded in a non-linear elastic medium and the associ-
ated force propagation. Inspired by the numerical results
(Fig. 2a), an exponentially decaying ansatz for the buck-
ling amplitude u(x) can be assumed as follows:

u(x) = u0 exp (x/`) sin
2πx

λ
, (8)

where ` is the decay length and λ is the buckling
wavelength. It is shown that reinforced microtubules
buckle when their compressive load exceeds a critical
value, consistent with the previous experiments [16].
Moreover, the resulting deformation is mostly limited
to a penetration depth, `, depending on the coupling
between the filament and the cytoskeleton (α‖, α⊥), as
well as the non-linear mechanical properties of the sur-
rounding matrix (β). The buckling amplitude goes with
the applied load f as (f − fc)1/2, while the penetration
depth (or decay length `) scales as (β/α‖)

1/2 (Fig. 2b).

Very recently, Shan et al. [21] furthered this investigation
by varying the magnitude of the nonlinearity in elasticity
(β), from significant to small. The numerical simulation
results show that in this linear regime, a decay length
still exists and scales as (κ/α‖)

1/4, where κ denotes the
bending rigidity of the rod [21]. They hence identified a
short wavelength buckling regime that is governed mainly
by the linear elasticity effect when the nonlinear medium
property (β) becomes negligible. Based on the linear
model, the exponentially decaying buckling profile was
found to relate to the external loading in the following
manner:

f − fc ≈
1

2
α‖`v(0), (9)

where v(0) is the displacement at the loading end of the
thin elastic rod.
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FIG. 3: Residual surface stress (a) causes
distributed stresses (b) on the buckling

nanowire [42]. Images adapted from [42] with
permission from American Institute of Physics ( c©

American Institute of Physics 2007)

Planar buckling instability of a rod on the nanoscale

On the nanoscale, the effects of surfaces on buckling,
bending and other mechanical properties can be de-
scribed by surface energy or surface stress. The surface
stress tensor σsαβ is related to the surface energy density
γ in the following manner [52, 53]:

σsαβ = γδαβ +
∂γ

∂εsαβ
;

or in 1D, τs = τ0 + Esε.

(10)

where εsαβ is the surface strain tensor, τ0 is the residual
surface stress and Es is the surface Young’s modulus.
Note that in the simplified 1D case, γ has been assumed
to be a single-valued function of ε, which introduces the
concept of surface elasticity [54].

By idealizing a surface with zero thickness but pos-
sessing a surface elasticity characterized by Es, Wang et
al. came up with an effective flexural rigidity (EI)∗ for
nanorods [34, 46]. The difference between (EI)∗ and the
original (EI) is determined by Es and other geometrical
parameters related to the cross section of the rod. The
authors then used Laplace-Young equation to describe
the jump of the normal stress across the elastic surface
< σ+

ij − σ
−
ij > ninj and obtained the distributed trans-

verse loading induced by the residual surface tension in
1D [34]:

q(x) = H
∂2u

∂x2
, (11)

where u is the transverse displacement as earlier defined
and H is a constant determined by τ0 and other geomet-
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rical parameters associated with the cross section. Fig.
3 shows an example of the stress distribution of such an
idealized nanowire with residual surface stresses.

Thus, the governing equation for the nanobeam buckling
is updated from Eqn. (5) to the following form:

(EI)∗
∂4u

∂x4
+ (T −H)

∂2u

∂x2
= 0. (12)

The solution to Eqn. (12) is similar to that of the con-
ventional Euler buckling in Eqn. (6):

T sc = η
π2(EI)∗

L2
+H. (13)

Es and τ0 may be negative or positive, and can be ob-
tained using atomic simulations [43, 55]. Thus, depend-
ing on the sign of these parameters, T sc may be larger or
smaller than Tc. The same holds for the estimation of
Young’s modulus from nanobeam buckling using conven-
tional Euler buckling formulation.

EXPERIMENTAL STUDIES

Buckling in elastic media

Brangwynne et al. [16] showed that intracellular mi-
crotubules can bear enhanced compressive loads when
the buckling wavelength is significantly reduced due
to elastic support of the surrounding cytoskeleton
matrix. In this pioneering study, a quantitative model
was proposed to interpret this behavior, which shows
that the transverse coupling has dramatically enhanced
the compressive loads that microtubules can bear,
implying that they can contribute more significantly to
the mechanical properties of the cell than previously
considered possible. As has been derived in the Theory
section, Euler buckling of a thin rod of length L under
an axial compression occurs at a critical load, fc. If
the rod is embedded in an elastic medium, however,
the deformation energy of the medium should also be
taken into account. More specifically, the elastic support
of a medium with a shear modulus, G, can reduce the
buckling wavelength to λ ∼ (κ/G)1/4 because of the
competition between the deformation energy of a rod
with bending rigidity κ and the elastic energy in the
medium due to the rod’s deflections [1]. Correspond-
ingly, the critical force fc also increases.

In addition to the theoretical contribution aforemen-
tioned, Shan et al. [21] also further studied the buckling
behavior of thin elastic rods reinforced by a biopolymer
matrix through experiments. It is shown that the
attenuated buckling of thin rods reinforced by an
elastic matrix can be accounted for by a linear model

FIG. 4: Load vs displacement curves for short
wavelength buckling of nitinol wires embedded
in gelatin. The excellent agreement of loading curve

slopes (f − fc/v(0)) with predictions from linear model
α`/2 verified the validity of the proposed model [21].

which quantifies the no-slip coupling between the rod
and medium. Here, the decay length is shown to be
controlled merely by the linear longitudinal coupling
to the medium and the rod’s bending rigidity, which
goes in contrast with the previous work which identified
a regime where the nonlinear response of the medium
controlled the penetration depth [17]. The experimental
results support that the linear model captures the main
features of the buckling behavior investigated here (Fig.
4). In addition, it is also identified, in this work, a
dynamic behavior where the rod and the medium can be
partially uncoupled, and that the effective nonlinearities
result from the stick-slip behavior at the interface, thus
revealing a rich and complex dynamic behavior of the
rod-gel interface.

Mechanical buckling also plays an important role in the
growth of some plant roots. For example, Silverberg et
al. [51] recently found that the roots of Medicago trun-
catula grown in a transparent hydrogel of two layers of
different stiffness deformed helically just above the up-
per gel layer interface. This phenomena has been shown
to result from growth-induced buckling in the medium
accompanied by a spontaneous twist near the growing
root tip. The helical morphology is shown to vary with
the modulus of the upper gel layer and demonstrate that
the size of the deformation varies with gel stiffness as ex-
pected by a mathematical model based on the theory of
buckled rods.
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Buckling on the nanoscale

Experiments of buckling on the nanoscale typically in-
volve nano-mechanical systems to achieve accurate po-
sitioning and application/measurement of mechanical
loading on the scale of nano Newtons. These nano-
mechanical systems include AFM probes, Nano-indenters
and many other custom-designed systems [22, 25, 38, 39].
The nanobeams or nanowires are typically grown on a
rigid substrate. Indenters, or other probes, can be driven
to approach the free end of the nanobeam to apply me-
chanical loading. By measuring the buckling profile and
tracking the buckling loads, these experiments on nan-
wires and nanorods have been used to estimate the me-
chanical properties of the corresponding materials on
nano scale and make comparison with those on the macro
scale.

C
O
M

M
U
N
IC

A
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N

strain e is calculated with a thin rod model.[24] We suppose that
the buckling force applied by the AFM cantilever is parallel to
the original unbuckled nanowire. The shape of the bent
nanowire is described by a schematic model (inset in Fig. 4),
which is given in the following form:

x ¼
ffiffiffi
2

p
l"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# cos u0

p
#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos u # cos u0

p" #

y ¼ 1ffiffi
2

p l
Ru

0

cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos u#cos u0

p
(1)

where u is the local orientation of the tangent to the nanowire. l
is a characteristic length, defined as l¼ (EI0/f)

1/2, where E is
Young’s modulus, I0 is the moment of inertia of the cross
section, and f is the magnitude of the buckling force. u0¼ u(L0)
is the local orientation at the top of the nanowire, where L0 is
the chord length of the unbuckled wire, that is, the length of the
nanowire. The maximum strain that occurs at the surface of the
nanowire is

"max ¼ r
du

dl
¼ r

1

dl=du
(2)

where r is the radius of the nanowire and

l ¼ lðuÞ ¼
ffiffiffiffiffiffiffiffi
1=2

p
l

Zu

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos u # cos u0

p (3)

is the arc length from the bottom of the wire to the point (x,y) in
discussion.[24]

Figure 1. TEM image of the SiNWs with 5–10 nm native oxide layer. Inset:
Selected area electron diffraction pattern.

Figure 2. Schematic diagram illustrating the experimental setup before
(a) and after (b) the manipulation.

Figure 3. a–f) A series of snapshot SEM images showing the continuous
buckling of the SiNW. g) Corresponding curve of the applied force F vs.
change in chord length jL# L0j when the NW was buckled. h) Calculated
stress–strain curve of the buckling of the NW. Inset: Schematic diagram of
the deformation approximation.
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FIG. 5: A series of snapshot SEM images showing
the continuous buckling of the Si nanowire using
an AFM probe [38]. Reproduction of images (a-f) from
[38] with permission from Wiley ( c© Wiley 2008)

FIG. 6: Load vs displacement curves for buckling
of ZnO nanowires by nanoindentation technique.
The inset shows the top view of the deformation zone
after indentation [25]. Reproduction of images (a), (b)
from [25] with permission from American Institute of

Physics ( c© American Institute of Physics 2007)

For instance, Hsin et al. investigated the buckling and
bending of Silicon nanowires using a manipulation probe
and an Atomic Force Microscope (AFM) tip within a
Scanning Electron Microscope (SEM) (Fig. 5) [38]. The
nanowires in this work were fabricated by a chemical va-
por deposition procedure. Using the conventional Euler
buckling theory, they estimated the Young’s modulus of
Silicon nanowire and found that it’s consistent with the
bulk value. Thus the elastic modulus was not changed
by the reduction to a nanometer scale. Similar result
was found for gold nanowires through direct contact
buckling using AFM probes within a SEM [39].

Ji et al. studied the buckling of Zinc oxide nanowires
under uniaxial compression, using nanoindentation
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technique [25]. These nanowires were grown on
ZnO:Ga/glass templates, with different diameters and
lengths, as denoted in Fig. 6, where sample A had a
length of 2000 nm and a diameter of 100 nm, while
sample B had a length of 800 nm and a diameter of
30 nm. The Force-Displacement curves were shown in
Fig. 6 for these samples. These curves showed a distinct
critical load for buckling initiation, which was used for
the estimation of Young’s modulus of ZnO nanowires
based on the conventional Euler buckling theory. It was
found that the Young’s modulus estimated from these
buckling experiment exhibited a strong size-dependent
effect, where the shorter and slender sample B had
a much larger E. In addition, the estimations of E
for both nanowires were larger than that of the single
crystal bulk wurtzite. The authors attributed this to
the potential roles of surface effects because of the large
surface-to-volume ratio. However, similar work on ZnO
nanowire by Riaz et al. reported a much smaller Young’s
modulus estimated from Johnson model instead of a
conventional Euler model [22].

These experimental findings verified the theory of sur-
face effects analyzed in earlier sections. Depending on
the surface elasticity constant and the residual surface
stress, the Young’s modulus may be overestimated or un-
derestimated if using Euler’s theory directly on buckling
of nanowires.

PERSPECTIVES AND CONCLUDING
REMARKS

While the large deformation and mechanical instability
in rod-like structures have been extensively studied,
many relevant, interesting problems remain to be inves-
tigated.

First, there are some mathematical complications in
modeling buckling and post-buckling of thin structures
that remain to be dealt with. For example, even in the
case of planar buckling of a rod embedded in an elastic
matrix, analytic solution has not hitherto been achieved,
not to mention the more complicated scenario of helical
buckling [51], where the mechanics is highly nonlinear.

Second, the mechanical instability of materials, es-
pecially biological materials, is often associated with
material inhomogeneity and nonlinearity. In particular,
exploring the role of mechanical instability in the mor-
phogenesis of living tissues and organs [56, 57] represents
new challenges to engineers. For example, not only
does mechanical buckling have significant implications
in addressing cytoskeletal mechanics, but also it plays
an important role in the morphogenesis of tortuous
veins often observed in a variety of diseases, such as

venous hypertension and diabetic retinopathy, whereby
the underlying mechanisms of vein tortuosity remain
poorly understood [58, 59]. Moreover, the buckling of
bio-filaments with thermal (entropic) effects presents
rich and complex behaviors [60–63], with significant
relevance in understanding the mechanical properties
of filament networks [64] and cellular processes such as
mechanotranduction and cytokinesis [65].

Third, extending the study of mechanical buckling in
rods to address instability in thin sheets and soft mate-
rials has received increasing attention [57, 67–69], where
geometric nonlinear effects [66] can play an important
role even for mechanically homogenous materials, adding
to the complexity in mathematically modeling the me-
chanical behavior of such nonlinear systems. Here the
coupling between geometric and material nonlinearities
can lead to interesting new phenomena that deserve
further theoretical and experimental investigations.

Last but not least, exploiting mechanical instabilities and
turning failure into use, such as in designing flexible and
stretching electronics [14], can lead to development of
new technology with broad applications in engineering.
In this review, we have mainly limited discussions to
buckling of rod structures, while the buckling, wrinkling,
and creasing of planar and bulk structures [70] open up
plenty of venues for both theoretical and experimental
investigations, with a broad spectrum of engineering ap-
plications.
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