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Abstract  
Diabetes is a long-standing disease that leads to secondary complications of capillaries such as 
retinopathy, nephropathy and neuropathy.  Emerging evidence suggests that diabetes may also affect 
the cerebromicrovasculature, the blood-brain barrier (BBB), and lead to changes in the brain that affect 
cognition and mood.  Therefore, it is important to identify natural compounds that may have 
therapeutic benefit for reducing BBB dysfunction and improve patient quality of life.  Preclinical 
evidence suggests that sesamol, a natural antioxidant in sesame seed oil, could have therapeutic benefit 
for treating BBB dysfunction during diabetes.  Similarly, paroxetine, which shares a methylenedioxy 
moiety with sesamol shows clinical benefit for treating neuropathic pain associated with diabetes.  This 
review emphasizes BBB dysfunction as a treatable secondary complication associated with diabetes and 
examines the evidence for the use of natural compounds like sesamol or existing therapies like 
paroxetine to help restore BBB function.  
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Introduction 

Microvascular dysfunction is a primary factor in 
the development and progression of disabilities 
most commonly associated with diabetes, 
including blindness, kidney failure, and 
peripheral neuropathies (1, 2, 3). 
Microangioapathy is clinically characterized by 
basement membrane thickening, cytoskeletal 
rearrangement, and increased paracellular 
leakage (4, 5). Extensive research has been 
conducted on microangiopathies in a number of 
tissues including kidney, peripheral nerves, 
retina, heart, and skeletal muscle (4, 6, 7). These 
studies have revealed that prolonged 
hyperglycemia, hypertension, dyslipidemia, 
insulin resistance and increased oxidative stress 
are important factors contributing to altered 
endothelial cell function (8, 9, 10). 
 
Hyperglycemia-induced oxidative-stress 
mechanisms contribute to microvascular 
alterations of the kidney and retina. 
Furthermore, increased oxidative stress (11) or 
decreased antioxidant enzyme activity (12) 
directly correlates to altered 

cerebromicrovascular function. However, the 
role of hyperglycemia-induced oxidative stress 
with regard to cerebral microvascular 
dysfunction has been understudied. One possible 
explanation for this gap in knowledge is that 
vascular dysfunction in other tissues leads to 
observable changes that have a long-standing 
association with diabetes. Meanwhile, changes 
to central nervous system function are subtle, 
worsen with time. Often the symptomatic phase 
for clinical diagnosis of CNS disease is managed 
with therapies that enhance neuron function 
(15). Therefore, it is important to better 
understand microvascular changes that occur in 
presymptomatic phases of altered mood and 
cognition and to identify potential compounds 
that can mitigate pathological molecular changes 
in the cerebromicrovasculature. 
   
The natural antioxidants in sesame seed oil show 
promise as being bioactive compounds that can 
aid to treat hyperglycemia induced altered 
blood-brain barrier (BBB) function.  This is a brief 
review examining the bioactivity of sesamol for 
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the use of vascular-related neurological issues 
associated with diabetes and examining and how 
the selective serotonin reuptake inhibitor may 
have additional therapeutic uses for treating 
diabetes associated microvascularopathies. 
 
Evidence for how perturbations in the blood-

brain barrier affect cognition 

The BBB is a dynamic, complex structure capable 
of rapid modulation and responsiveness to 
stimuli (13). The BBB is a semi-permeable 
membrane with unique characteristics that 
confer distinct properties that differentiate the 
BBB from peripheral capillaries including a well-
defined basement membrane, presence of tight 
junctions, absence of fenestrations, and close 
apposition to other brain cell types, including 
pericytes, astrocytes, microglia, and neurons 
(14).  The complex interaction between these 
cells is called the neurovascular unit. It has been 
known that intracellular signaling between these 
supporting cell types and the cerebral 
microvasculature can affect permeability of tight 
junctions (15). However, recent evidence 
suggests that diabetes modulates the function of 
supporting cell types such as astrocytes and 
microglia (16,17).  These findings suggest that 
BBB dysfunction is a consequence of altered 
neurovascular unit cell-to-cell interactions.    
Moreover, the brain is a heterogeneous entity 
with different regions having specific neuronal 
functions and metabolic needs (15), thereby 
leading to alterations in BBB dysfunction that are 
region specific (18).   
 
Previous findings have shown time-dependent 
and region specific alterations in BBB function 
during experimental diabetes (18).  Interestingly, 
two of the most vulnerable regions to BBB 
dysfunction in this study were the hippocampus 
and the midbrain (18).  These regions correlate 
to observed clinical pathologies in patients with 
diabetes such as alterations in cognitive function 
and mild depression.  The clinical significance of 
these findings suggest that cerebromicrovascular 
dysfunction may be an underlying cause of 
secondary clinical pathologies in patients with 

diabetes. Small “openings” in the BBB can have a 
significant impact on BBB function and structure. 
Using magnetic resonance imaging on patients 
with type 2 diabetes, investigators showed 
increased BBB permeability to gadolinium-
diethylenetriamine pentaacetic acid (DTPA). 
These findings suggest that openings in the BBB 
to a small molecule (gadolinium-DTPA; 570 Da) 
may play a role in the progressively worsened 
cognitive impairment or mild depression often 
seen in patients with diabetes (19). 
 
The Blood-Brain Barrier Phenotype, Diabetes-

associated BBB Dysfunction & Sesamol 

Treatment  

A particularly novel aspect of BBB structure is the 
presence of tight junctions, which create a 
barrier to paracellular diffusion of solutes 
between adjacent endothelial cells (14). The 
tight  junctions are dynamic structures, in which 
multiple signaling pathways and factors regulate 
the expression, localization, and protein-protein 
interactions of the tight junction (20). Studies 
have shown that changes in total expression and 
subcellular localization of the tight junction 
proteins have been associated with alterations in 
paracellular permeability (21).  Changes in 
localization of some tight junction proteins may 
play an important role in communicating the 
state of cell–cell contacts to the nucleus and 
participating in regulation of growth, 
differentiation, and gene expression (22).  
Changes in regulation of tight junction proteins 
lead to small pertubations in the brain 
microvaculature and subsequent neuronal 
changes in neuron function (14, 23).  A previous 
study showed that cognition was impaired in 
diabetic rats and that sesamol treatment alone 
could improve cognitive function (24)  These 
findings suggest that insulin independent 
oxidative stress mechanisms contribute to 
impaired cognition during diabetes.  Meanwhile, 
another study showed that sesamol restored 
expression of key tight junction proteins and 
restored blood-brain barrier function (25).  
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Tight junctions consist of the transmembrane 
proteins junctional adhesion molecule, occludin, 
and claudins, linked via accessory proteins 
including zonula occludens-1 and -2 to the actin 
cytoskeleton. Transmembrane proteins claudin 5 
and occluden homotypically bind the adjacent 
endothelial cell to form the tight junction. 
Transmembrane proteins claudin 5 and 
occludens homotypically bind to form the tight 
junction.   A previous study showed that sesamol 
increased the protein expression of both claudin-
5 and occludin in isolated cerebromicrovessls 
(14,23).  The BBB possesses a high electrical 
resistance (1500–2000 Ω*cm2), which creates 
both an electrical and physical barrier to 
maintain brain homeostasis (14).  Due to the 
presence of tight junctions, efflux pumps and 
specific transport proteins, few chemical 
moieties can cross into the brain (14, 23).  

However, sesamol, but not associated 
metabolites, have been identified in brain tissue 
(26). To further support sesamol bioactivity in 
the brain, other preclinical studies of 
neurological diseases have shown that sesamol 
improves cognitive function (24, 27), motor 
abilities (28) and reduces biochemical markers of 
inflammation and oxidative stress in the brain 
(24, 27, 29, 30).  The ability for sesamol to 
permeate the BBB could be attributed to its low 
molecular weight and lipophilic nature. The next 
section will review the anti-oxidant properties of 
sesamol and potential effects for reducing 
microvascular inflammation.  A summary of he 
proposed protective molecular mechanisms of 
sesamol can be viewed in Figure 1. 
 
 

 

 
 
Figure 1. Schematic representation of the tight junction between two cerebral endothelial cells & 
potential protective effects of sesamol on BBB tight junctions. Cerebral endothelial cells also possess 
cadherins and  junction adhesion molecule. However, the tight junction, comprised of zona occludin, 
claudin-5 and occludin, provides the BBB with a unique phenotype. (A) Zona occludens serve as the 
cytoskeletal scaffolding for the transmembrane proteins claudin-5  and occludin, which forms the cell-
to-cell junction. Experimental diabetes reduces zona occludin protein expression and sesamol treatment 
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increases increases zona occluden protein. (B) Claudin-5 is a transmembrane protein that homotypically 
binds in the intracellular junction. Claudin-5 is essential for BBB tight junction formation. Sesamol 
increased Claudin-5 protein expression.  However, reports conflict as to whether experimental diabetes 
decreases Claudin-5 protein.  (C) Phosphorylation of occludin determines cellular location either within 
the cytosol (unphosphorylated) or at plasma membrane (phosphorylated) and location within the cell 
reflect changes in paracellular permeability. Sesamol may enhance phosphorylated occludin, thereby 
leading to increased BBB integrity through homotypic extracellular binding between cerebral endothelial 
cells. (D&E) Tight junctions are dynamic structures, which are regulated by multiple signaling pathways 
and external factors. External changes increasing inflammation and oxidative stress can influence tight 
junction protein expression and subcellular localization. (D)  Tight junction proteins occluden and zona-
occludin are MMP substrates. Therefore, increased MMP activity could lead to decreased tight junction 
protein. Sesamol can decrease MMP activity. (E) Inflammatory status of other cell types in the brain (e.g. 
neurons, astrocytes, microglia, etc.) can influence BBB integrity.  Sesamol treatment can modulate 
astrocyte-mediated oxidative stress.  Additionally, varying models of neurological disease show that 
sesamol treatment can reduce total oxidative stress and inflammatory status while enhancing 
antioxidant enzyme function in brain tissue. 

 
Sesamol 

Sesamol, a natural antioxidant found in sesame 
seed oil, is thought to have greater antioxidant 
activity than other antioxidant lignans found in 
sesame seed oil. Sesamol can scavenge 
superoxide anion (29, 30, 31), a property 
attributed to phenolic compounds. The 
benzodioxyl moiety gives sesamol the unique 
ability to neutralize hydroxyl anion (29, 30, 32) 
and peroxyl radical (33, 34, 35). These 
antioxidant properties are particularly helpful for 
reducing oxidative stress in lipid-rich brain 
vulnerable to Fenton-catalyzed lipid peroxidation 
due to the high metabolic activity of the brain, 
content of polyunsaturated fatty acids and metal 
cofactors.   In the brain, sesamol has been shown 
to reduce lipid peroxidation, enhance antioxidant 
enzyme function and reduce markers of 
neuroinflammation.  An in vitro study showed 
that sesamol can attenuate the production of 
nitric oxide (36) and hydrogen peroxide and 
reduces monoamine oxidase activity in cultured 
astrocytes (37), which suggests that sesamol can 
modulate the activity of other cells that regulate 
BBB integrity. Alterations in monoamine oxidase 
activity correlate to oxidative stress and 
neurodegenerative disease development seen in 
aging, Alzheimer’s Disease and stroke. 

Additionally, the benzodioxyl group of sesamol 
may include gene regulating abilities, as 
indicated by other benzodioxyl-containing 
compounds (38, 39, 40).  Most noteably, 
evidence suggests that sesamol has 
cardioprotective benefits by regulating vascular 
function and influencing circulating lipids by 
modulating liver function. One clinical study 
showed that sesame seed oil can control 
increased blood pressure, hyperlipidemia and 
lipid peroxidation (by increasing enzymatic and 
non-enzymatic antioxidants (41) and similar 
findings have been highlighted in preclinical 
studies (42, 43, 44).  Sesamol treatment reduced 
plasma cholesterol and triglycerides in acute and 
chronic hyperlipidemia, improved  vascular 
function (42) and can up regulate protective 
vascular enzymes such as peroxisome 
proliferator-activated receptors  (43, 44) in the 
liver.  Protective effects on the microvasculature 
likely stem from reduction of matrix 
metalloproteinase activity (43, 45, 46, 47) and 
stabilization of cell membranes through other 
redox sensitive mechanisms (48).  Models of 
diabetic neuropathy and nephropathy highlight 
the combination of sesamol and insulin as the 
most effective mode of reducing inflammatory 
cytokine release (i.e. Tnf-a and TGF-B), reduced 
nitrosative stress and reduced caspase-3 protein 
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(49, 50).  Decreased inflammatory cytokines and 
nitrosative stress have been reported in the 
brain with sesamol treatment (25, 27, 28).  
Mechanistic studies further elucidating these 
mechanisms within the cerebromicrovasculture 
are warranted.  The next section will discuss the 
translation of findings linking sesamol to 
paroxetine, an approved therapy with a similar 
methelynedioxy moiety.   
 
Sesamol, Paroxetine and Potential treatment 

for BBB dysfunction 

Paroxetine is a clinically used anti-depressant 
classified as a selective serotonin reuptake 
inhibitor (SSRI). Paroxetine and sesamol both 
share a methlylenedioxy moiety, which is unique 
to paroxetine compared to other SSRIs.  A cell-
screening study identified paroxetine as a 
compound that reduced hyperglycemic 
endothelial cell injury by reducing mitochondrial 
ROS formation, mitochondrial protein oxidation 
and nuclear DNA damage without modulating 
cell bioenergetics or mitochondrial electron 
transport (51).  At the cellular level, cross talk 
between NADPH oxidases and mitochondria lead 
to a feed-forward cycle of endothelial generation 
of ROS (52) during states of hyperglycemia.  
These findings pose an interesting concept of 
finding new uses for drug therapy for existing 
compounds outside the original indication (52).   
A few clinical studies report paroxetine as being 
useful for treating diabetes-related neuropathic 
pain (53, 54 , 55) or depression in patients with 
type 2 diabetes (57, 58, 59), while other studies 
point to concerns of paroxetine promoting 
insulin resistance alone (60, 61) or in 
combination with pravastatin therapy for 
dyslipidemia (62). Another study showed that 
paroxetine treatment improved insulin sensitivity 
in patients without diabetes (63).  Additional 
prospective clinical studies are needed to 
evaluate the usefulness of paroxetine for 
treating BBB microangiopathy during diabetes. 
 
 

 

Conclusion 

Microvascular dysfunction leads to secondary 
complications associated with diabetes and 
surmounting evidence highlights BBB dysfunction 
as a potential cause of neurological effects 
associated with diabetes.  Sesamol is a natural 
antioxidant in sesame seed oil that was shown to 
improve cognition and BBB structure and 
function in preclinical models of diabetes.  This 
action is likely associated with reduced 
inflammatory processes in the brain and reduced 
peripheral cholesterol and TAGs.  Sesamol and 
other lignans in sesame seed oil possess a 
methylene dioxy moiety, which is a shared 
chemical structure with the SSRI paroxetine.  
Paroxetine or sesamol maybe useful for slowing 
the progression of BBB dysfunction and relieve 
symptoms of mild cognitive deficits or 
depression   in patients with diabetes.  Clinical 
studies indicate that paroxetine has clinical utility 
for treating diabetes-associated 
microangiopathies like neuropathic pain and 
depression.  However, additional studies 
examining the clinical utility of paroxetine for 
these indications and mechanistic studies 
investigating structure activity relationships 
between BBB and methylenedioxy moieties are 
warranted. 
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