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Abstract 
Thoracic aortic aneurysm (TAA) is a devastating vascular disease. TAA patients have dilated ascending 
aorta that eventually ruptures and leads to death. Treatment of TAA is limited to surgery only. The 
structural and morphological changes localized to the ascending region have intense effect on 
functioning of the aorta. Recent scientific studies have demonstrated that the underlying cause of TAA is 
a result of various alterations at the cellular level. Given that there is an absence of a direct 
pharmacological treatment for TAA, therefore a growing demand to determine the underlying 
mechanisms of TAA is utmost necessary to elucidate. Till date, a great progress has been made to 
diagnose and identify the risk factors of TAA, however a better understanding of the mechanisms that 
trigger the progression is needed in order to develop new therapeutic strategies. The current review 
compiles the recent highlights about the contributions of cellular mechanisms involved in the 
development of TAA.   

Keywords: ascending aorta, cytoskeletal proteins, fibroblasts, smooth muscle cells, thoracic aortic 
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Introduction  

Aorta is the main artery carrying blood from the 
heart to the different organs of the body. The 
region of aorta that is closest to the heart is the 
ascending aorta present in the thoracic cavity 
(Figure 1). The nature of the tissue present in the 
ascending aorta is unique and making it prone to 
many pathological consequences. This region is 
subjected to aortic dilation, elastin 
fragmentation, dissection and rupture, ulcer 
formation or erosion of the vascular tissue and 
thrombus formation [1-3]. The triggering step for 
initiating these pathological conditions in the 
ascending aorta is not clearly defined. Around 
45,000-47,000 deaths are reported every year 
from aortic diseases in United States alone and 
the incidence rate has increased over the 
decades[4 5]. This number may vary as many 
cases are undiagnosed and mistakenly classified 
as cardiac arrest.[4] The presence of ascending 
aorta in the thoracic cavity classifies this 
pathology as thoracic aortic aneurysms (TAA) 
(Figure 1). Many TAAs are asymptomatic and can 

occur at any age in both genders. So far the 
current treatment is limited to surgery [6-8]. 
Though with help of modern technology, less 
invasive clinical methods exist but are at their 
infant stages. Therefore, persistent needs are 
required to identify the elements that predispose 
to the disease and prevent the treatment from 
surgery to other alternative medicines. The 
current research is aimed at alternative medical 
interventions that can improve the damaged 
regions and restore vascularization of the aorta. 
To make this change, there is an immeasurable 
need to define the mechanisms involved in the 
development of TAA. 
 
Diagnosis and Risk Factors of TAA 

TAA is generally detected during regular medical 
tests including chest X-ray and ultrasound of the 
thoracic cavity. The physician may further 
recommend for echocardiogram or 
computerized tomography or magnetic 
resonance angiography to further validate and 
detect the exact location of the damage in the 
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tissue. The later imaging techniques can detect 
the size and diameter of the aortic dilation. The 
range of the normal diameter of the ascending 
aorta is between 3-5-3.9 and if it expands more 
than 4 cm is considered as aneurysm and it can 
expand to 5.5 cm in diameter [9]. 
 
There have been various risk factors associated 
with TAA including age, hypertension, 
inflammation, smoking, atherosclerosis, 
dyslipidemia and age of the ascending aorta. The 
angle of bending of the ascending aorta has been 
also shown to be another risk factor for TAA [10]. 
Strenuous exercise or any kind of distress in the 
chest cavity or an injury during surgeries can also 
lead to the damage of the ascending aorta and 
causing TAA.  

 

Genetic factors are also responsible for the TAA 
formation. TAA can be syndromic and non-
syndromic in nature. Marfan’s syndrome (MS) is 
a result of genetic mutation in the fibrillin-1 
gene[11 12]. MS is a connective tissue disorder 
that primarily occurs in the ascending aorta. It is 
also known as cystic medial degenerative 
disease. MS is an autosomal dominant disease 
with penetrance rate highly inconsistent. MS 
patients have loosely connected smooth muscle 
cells and microfibrils with extension of elastins 

[12 13]. MS patients also have defective collagen 
synthesis and deposition, reduced elastin fibres, 
increased expression of many extracellular 
matrix proteins and inflammation [14-16]. Visible 
signs of MS patients are thin and very tall build in 
structure, long arms, fingers, legs and toes with 
flexible joints. MS is recognized as a pathological 
condition with a progression of TAA. Another 
disorder linked to TAA is Loeys-Dietz Syndrome 
(LDS) [17 18]. This disease is due to genetic 
mutations in transforming growth factor β-
receptor 1 and 2.  Similar to MS syndrome, LDS is 
also a connective tissue disorder.  Patients with 
LDS are characterized by skeletal and craniofacial 
abnormalities and are more prone to develop to 
TAA formation. Ehlers-Danlos syndrome (EDS) is 
also coupled with TAA [19 20]. This is also an 
autosomal dominant disorder. This vascular 
disease hits due to malfunctioning in pro-
collagen production. Mutations in the Col3A1 
gene have been reported in these patients.  In 
other cases, TAA has also been observed in 
patients with Turner syndrome [21], Noonan 
Syndrome [22] and polycystic kidney disease 
[23]. The above-mentioned genetic diseases of 
TAA are syndromic. Non-syndromic TAA are also 
reported which include thoracic aortic 
aneurysms and dissections and familial aortic 
dissections [24 25]. Sporadic TAA are described 
also but they are rare and occur in isolated cases.  
Sporadic cases are due to autoimmune defects, 
inflammatory, Takayasu arteritis, and 
rheumatoid arthritis. Several diagnostic and risk 
factors have been identified and connected them 
with TAA.  Recent studies have made a great 
progress in demonstrating a link between the 
risk factors and pathophysiological changes 
occurring in ascending aorta, however, each 
individual case is completely different from the 
other. There is more need to understand in 
depth about the mechanisms responsible for the 
development of TAA.  

Characterization of TAA 

TAA is a life-threatening disorder that has a huge 
impact on the lifestyle of an individual once 
being diagnosed. TAA is a complex and 
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Figure 1: (A) Anatomy of the heart, ascending and 
descending aorta in the thoracic cavity. Boxed region is 

shown (B) of a normal heart and (C) a dilated ascending 
aorta of TAA heart (blue arrow).    
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heterogeneous in nature that is localized to the 
ascending aortic region mainly but rare cases are 
also seen in the descending aorta (Figure 1). In 
general, ascending aorta is comprised of three 
main layers: intima, media and the adventitia. All 
these layers are separated by elastic fibers and 
laminae. The cellular composition of intimal and 
medial layers is endothelial and smooth muscle 
cells, respectively (Figure 2). Adventitia is 
heterogeneous in composition, having vast array 
of cells; fibroblasts, macrophages, nerve cells, 
adipose, immune cells in collagen rich in 
extracellular matrix (Figure 2) [26 27]. TAA is 
characterized by luminal enlargement through 
the whole of the ascending aorta (Figure 1). TAA 
is a progressive disease, where the aortic intima 
and medial layers are torn, which allows the 
entry of blood cells into the media and causes 
the split of medial layer and that opens up to the 
development of another channel known as false 
lumen. At this stage, medial changes lead to 
elastin fragmentation and medial thickening that 
profoundly affects the blood flow in the aorta 
[28]. Further, this region is prone to rupture in 
patients with continuous aneurysm expansion 
and aortic wall weakening. The contribution of 
each cellular component of the ascending aortic 
wall in TAA is discussed in the following section.  

 

Cellular mechanisms involved in TAA 

Recent scientific studies have improved our 
understanding of TAA, which holds a promising 
potential of developing into new therapeutic 
strategies for treating this pathology. Ascending 
aorta present in the thoracic cavity consists of 

vast array of cellular components that maintain 
and regulate the proper functioning of the tissue. 
Any alterations can further change the course of 
work done by each specific cell type. This leads 
to morphological and structural variations in the 
tissue. Different compartments of the aorta are 
smooth muscle cells; fibroblast cells and several 
cytoskeletal members are associated with TAA 
formation. Briefly, the role of each cellular 
compartment involved in the progression of TAA 
is highlighted and discussed below.  
 
Smooth muscle cells: Medial layer of the aorta is 
primarily comprised of vascular smooth muscle 
cells separated by elastin fibers. Smooth muscle 
cells are highly plastic in nature and switch 
between different phenotype conditions [29 30]. 
One form is synthetic or proliferative phase and 
another is the highly contractile and completely 
differentiated or a mature smooth muscle cell. 
This switching is transient and reversible 
depending on the environment around smooth 
muscle cells. The contraction of smooth muscle 
cells is due to the presence of actin and myosin 
complexes, which are connected to the cell 
membrane via filamin A and actin proteins. The 
main function of smooth muscle cells is to 
maintain the cell shape, alignment and 
migration. Vascular smooth muscle cells also 
regulate the functions of cytoskeleton proteins 
[31]. Studies have shown that smooth muscle 
cells interact with the neighboring cellular 
compartments including the collagen, elastin, 
fibrillin and fibrullin. These components basically 
belong to the family of extracellular matrix 
proteins. Smooth muscle cells interact with these 
elements through the receptor signaling 
especially the integrin, G-coupled and discoidin 
receptors [32-34]. Variations occurring in the 
proteins regulated by smooth muscle cells of 
ascending aorta are responsible for the 
development of TAA. Since this disrupts the 
shape and alignment of the smooth muscle cells. 
The downstream effect of this leads to abrupt 
signaling and synthesis of different proteins by 
smooth muscle cells. In TAA patients, smooth 
muscle cells undergo apoptosis and the 
fragmentation of elastin fibers [35]. Mutations 
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Figure 2: Schematic representation of ascending aortic 
vessel wall. Intima and media comprise of ECs and 

SMCs, respectively. Adventitia comprises of fibroblasts 
(grey), adipose (yellow), macrophages (blue) and immune 

cells (light blue) in a cell matrix (white mesh lines).  
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have been reported in actin assembly induction 
protein, β-myosin heavy chain and filamin A 
genes that are encoded by smooth muscle cells 
and linked to TAA and EDS [36-38]. 
 
Fibroblasts: Fibroblast is the main cellular 
element of the aortic adventitia.  Recent studies 
have shown that fibroblasts are involved in 
inflammation, remodeling of the aortic tissue 
and thoracic aortic aneurysm and dissection [39-
41]. Alterations in elastin fibers and smooth 
muscle cells are accompanied with the changes 
in function of fibroblasts. Fibroblasts have a 
tendency to change its phenotype into 
myofibroblasts in response to any damage. 
Myofibroblasts are easily distinguishable from 
fibroblasts as they stained also with smooth 
muscle cell markers such α-actin and myosin 
heavy chain. In human samples with TAA, have 
demonstrated altered expression of 
myofibroblasts markers such as fibroblast 
specific protein-1 [42 43]. In animal model of 
TAA, the abundance of myofibroblasts was 
significantly increased in the aortic tissue [41]. 
Fibroblasts and fibroblasts-derived cells, 
myofibroblasts could be promising potential cell 
types to re-vascularize the aorta. 
 
Collagen: Media, adventitia and basement 
membrane of the ascending aorta is rich in 
collagens. The main function of collagen is give 
tensile strength and stiffness to the aortic vessel 
wall. There are different types of collagen such 
as Type I, II, III and IV. All these forms of collagen 
genes are expressed in the aortic wall however; 
Type I and III are relatively higher in this tissue. 
Collagen also regulates several signaling 
pathways that determine adhesion and 
proliferation of cells [44 45]. Genetic variations in 
the collagens contribute to the development of 
TAA formation. As mentioned earlier, mutations 
in Col3A1 leads to EDS [19]. In addition, 
mutations in Col1A1, Col1A2 Col4A1 and Col4A5 
genes are also associated with aneurysm 
formation [46-48]. During TAA, Type I and III are 
increased subsequently leading to collagen 
deposition and elastic fragmentation and 
weakening. Later this leads to stiffness of the 

vessel and augmentation of aorta to dissect and 
rupture [49].  
 
Elastin: Elastin is a very critical component of the 
aorta. It is maintains the structure of the aortic 
wall. Elastin responds to any external stimuli 
including mechanical or chemical and also plays 
an important role regulates signaling between 
cells. Elastin interacts with smooth muscle cells 
of the media, extracellular components of the 
adventitia and also with endothelial cells in the 
intima to maintain the structure and 
organization within the wall [50]. Elastin confines 
the migration and proliferation of the cells [51]. 
One of the most common features of TAA is 
elastin fragmentation [2]. Deficiency of elastin in 
mice leads to death due to deformed smooth 
muscle cells [52]. 
 
Microfibrils: Microfibrils are component of 
elastin fibers that give strength to the aorta [53]. 
Elastin microfibrils interface located (EMILIN) 
proteins are present in extracellular matrix. 
There are different EMILINs identified; EMILIN 1, 
2 and 3, out of which EMILIN 1 is learned the 
most and minimum known is about EMILIN 3. 
EMILIN 1 -/- deficiency in mice has demonstrated 
decrease in aortic aneurysm formation. Other 
characteristics of EMILIN 1 -/- mice are irregular 
collaboration among smooth muscle cells and 
elastic fibers [54]. Absence of EMILIN 2-/- is 
associated with the increased risk of developing 
cardiovascular diseases [55]. EMILIN is able to 
bind to the fibulins and elastins. Future 
experiments are required to define the exact role 
of EMILINs in TAA.  
 
Fibrillin: Microfibrils are comprised of fibrillins. 
There are two isotypes of fibrillins identified as 
fibrillin 1 and 2. Fibrillin 3 is also identified but is 
not studied much. Fibrillins interact with collagen 
and other members of extracellular matrix. The 
function of fibrillins is to provide strength to any 
tissue. Fibrillin 1 isoform is expressed throughout 
life and participate in regulating receptor 
signaling including integrin and proteoglycans. 
Mice with fibrillin 1 deficiency have been 
established as an excellent model of MS [56-58]. 
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Genetic mutation in fibrillin 1 leads to C to G 
change at 1039 nucleotide position that is 
susceptible and predisposes to MS, a form of 
TAA. Fibrillin 1 mutations lead to hardening of 
the aortic wall, increase in transforming growth 
factor β1 expression, inflammation, elastin 
degradation and extracellular matrix up-
regulation [56]. Fibrillin 2 is primarily expressed 
during the embryonic phase and is responsible 
for the development of aorta [59]. Unlike fibrllin 
1 -/- mice, the absence of fibrillin 2 has no effect 
on the development of aortic aneurysm.  
  
Fibulin: Fibulin is one of the primary members of 
extracellular matrix family. The main function of 
fibulin is in the structural organization of the 
aortic wall. Fibulin 5 functions as an important 
role in the development of lamellar structure by 
connecting elastin and smooth muscle cells [60]. 
Studies have shown that mutations in fibulin 4 
and 5 are related to aortic aneurysms in humans 
[61 62]. Deficiency of fibulin 4 and 5 in mice has 
resulted in enlargement of ascending aorta. It 
has demonstrated that aortic tortuosity, slack 
skin and disordered elastin fibers [63 64]. The 
other forms of this family are fibulin 1, 2 and 3 
that have no consequences on aortic aneurysms.  
 
Other Mediators of TAA 

Apart from cellular mechanisms involved in TAA, 
there are biochemical-signaling pathways that 
are associated with this etiology. Briefly these 
are inflammatory, oxidative, extracellular matrix 
proteins, transforming growth factor-β and 
angiotensin II signaling pathways. Researchers 
have also focused on these pathways and its 
effect on downstream targets. Any variations in 
the expression of the genes involved in these 
pathways have been demonstrated to be 
associated in the development of TAA. In 
addition, there are other mediators regulating 
the TAA formation such as mechanical pathways. 
Sheer wall stress and radial strain on the aortic 
wall play a very critical role in the blood flow 
through the aorta. Any malfunctioning of a 
mechanical signal can implicate on the structure 
and function of resident cells of the aorta. 

 
Treatment and drugs 

Till date, there is no direct pharmacological 
therapy for treating TAA. However, the results of 
animal model studies have demonstrated 
encouraging role of few drugs in treating TAA. 
Angiotensin II receptor blocker (ARBs) are 
commonly prescribed to hypertensive patients. 
In mice model of TAA, fibrillin 1 -/- mice, 
losartan, an ARB has demonstrated to attenuate 
diameter of aorta and enhanced the structure of 
the aorta [56]. Similarly, β-adrenoreceptor 
blocker also showed similar results as of ARB. 
Another assuring inhibitor is doxycyclin, a matrix 
metalloproteinase (MMP) inhibitor showed in 
the same model, reduction of extracellular 
matrix proteins in particular MMP2 and MMP9 
[65 66]. Finally, Habashi et al also showed that 
giving a neutralizing antibody against 
transforming growth factor β1 into a TAA animal 
model restored the aortic wall structure [56]. 
Based on these excellent observations in animal 
model studies, some of these drugs have entered 
into clinical trails [67 68]. 
 
Conclusion 

TAA is a very complicated disorder with a huge 
variation among each case. However, past few 
years of research with the help of modern 
techniques and technologies has visualized the 
discovery of many new results that have 
provided precious information about the 
pathology of TAA. These findings have laid the 
foundation in a new direction for the 
development of novel treatment strategies in 
treating TAA. However, unceasing research in 
this field is the need of the hour to elucidate and 
complete the puzzle of understanding TAA.  This 
knowledge will definitely lead to more 
pharmacological therapies that are more specific 
for each individual. In future, there will be more 
clinical insights for curing TAA. 
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