Mitochondrial Ca2+-dependent inlfammasome activation exacerbates the *P. aeruginosa*-driven inflammatory response

Rimessi A1, Patergnani S1, Giorgi C1, Marchi S1, Bonora M1, Bragonzi A2, Cabrini G3, Pinton P1

1Dept of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Italy, 2Cystic Fibrosis animal core facility, San Raffaele Scientific Institute, Milano, Italy, 3Laboratory of Molecular Pathology; Department of Pathology and Diagnostics, University-Hospital of Verona, Italy (Grant No.FFC#19/2014) [doi.org/bwj9]

Keywords: Mitochondria, Ca2+ signaling, Inflammasomes, inflammatory response

Background. The chronic airway infection by *Pseudomonas aeruginosa* (*P. aeruginosa*) in Cystic Fibrosis (CF) is a pathological manifestation associated with an excessive inflammatory response. The NOD-like receptors (NLRs) are intracellular pattern-recognition receptors that recognize pathogen-associated molecular patterns activating pro-inflammatory response through the assembly of large caspase-1-activating complex, called inflammasome. Recent data suggest that the mitochondria integrate distinct pro-inflammatory signals and relay this information to a key molecular complex related to inflammation, the inflammasome. It has been demonstrated that mitochondria are the main source of inflammasome-activating radical species and as such may constitute the signal-integrating organelle for inflammasome recruitment and activation in *P. aeruginosa*-driven inflammation in CF. Moreover, in the previous project we have demonstrated that mislocalized CFTR is associated with an increase in intracellular Ca2+ content and that it favored the mitochondrial Ca2+ uptake, predisposing the organelle to a major stress responsivity.

Hypothesis and objectives. The overall goal of this project is to broaden our knowledge on role of mitochondria to decode and integrate the pro-inflammatory signals generated during *P. aeruginosa* infection in CF. We have performed experiments aimed at obtaining a deeper insight into the complex mechanism that controls the mitochondrial homeostasis, in particular the Ca2+ signal, and the inflammasome activation induced by pathogen in CF.

Methods. The mitochondrial dysfunction is direct link between *P. aeruginosa* infection and inflammasome recruitment in CF epithelial airways cells. On these topics: Ca2+ signaling and mitochondrial function; the expertise gained and the previous works by the PI and collaborators represent the methodological and cultural background of this grant.

Results. Summarizing, in these two years we have demonstrated that:
- *P. aeruginosa* affects mitochondrial Ca2+ signaling and physiology.
- Flagellin is an inducer of mitochondrial dysfunction.
- The degree of *P. aeruginosa*-dependent inflammatory response depends on defective CFTR.
- *P. aeruginosa* promotes NLRP3 activation in CF cells
- Mitochondrial Calcium Uniporter (MCU) links *P. aeruginosa*-dependent mitochondrial dysfunction to NLRP3 activation.

Spin-off for research and clinical purposes. The translational aim of this project is identified alternative strategy for treating exacerbated *P. aeruginosa*-triggered inflammation in CF. Our results indicate MCU as target for therapeutic approach focused to rescue the mitochondrial physiology, counteracting tissue degeneration and mitigating the inflammatory response.

Acknowledgment. FFC #10/2014: funded by FFC, supported by Delegazione FFC di Villa D’Almè Bergamo, Gruppo di Sostegno FFC di Reggello Firenze, Gruppo di Sostegno FFC di Lainate, Delegazione FFC di Verbania V.C.O.

References

5. Rimessi, A., et al. (2015), Mitochondrial Ca(2+)-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis, Nature communications 6, 6201 https://doi.org/10.1038/ncomms7201 PMid:25648527