Mechanisms and clinical implications of endothelial dysfunction in cystic fibrosis

Totani L1, Plebani R2,3, Patruno S2,3, Piccoli A1, Di Silvestre S2,3, Lanutì P3,4, Recchiuti A2,3, Cianci E2,3, Dell’Elba G1, Sacchetti S1, Guarnieri S3,4, Marigliò MA1,6, Mari VC2,3, Anile M7, Venuta F3, Del Porto P4, Moretti P5, Prioletta M2, Mucilli F3, Marchisio M3,4, Pandolfi A2,3, Evangelista V1, Romano M1,2

1Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Italy; 2Department of Medical, Oral and Biotechnological Sciences, G. D’Annunzio University, Chieti-Pescara, Italy; 3Center on Aging Sciences and Translational Medicine (CeSI-MeT), G. D’Annunzio University, Chieti-Pescara, Italy; 4Department of Medicine and Aging Sciences, G. D’Annunzio University, Chieti-Pescara, Italy; 5Center for Synaptic Neuroscience, Italian Institute of Technology, Genoa, Italy; 6Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University, Chieti-Pescara, Italy; 7Department of Thoracic Surgery, University of Rome “Sapienza” Rome, Italy; 8Department of Biology and Biotechnology “Charles Darwin” Sapienza University, Rome, Italy; 9Cystic Fibrosis Center, S. Liberatore Hospital, Atri (TE), Italy (Grant No. FFC#23/2014) [doi.org/bwkp]

Keywords: Endothelial cells, microvesicles, microRNA, shear stress, phosphodiesterase inhibitors.

Background. Despite the involvement of endothelial cells (EC) in cystic fibrosis (CF) pathogenesis is suggested by (1) the emerging evidence of the risk for cardiovascular events in CF patients as well as by (2) our work showing endothelial dysfunction and its correlation with lung disease in CF patients, EC have not been extensively studied in CF.

Hypothesis and objectives. We hypothesized that the elucidation of CFTR signaling in EC may provide clues for innovative pharmacology for CF. Main objectives of this study were to: 1. Uncover mechanisms of CF endothelial dysfunction as molecular targets for novel therapeutics. 2. Elucidate the clinical relevance of circulating endothelial cells (CEC) and endothelial microvesicles (EMV) in CF.


Results. We isolated EC from pulmonary artery of explanted CF lungs (CF-PAEC) and measured CFTR activity using patch clamping. With experiments under static conditions or shear stress, we demonstrated that CF-PAEC displayed reduced monolayer integrity and trans-endothelial electric resistance (TEER), whereas they released a higher number of microvesicles (EMV). Similar results were obtained with PAEC and CF-PAEC immortalized with SV40 large T antigen. CF-EMV had a different impact on PAEC and CF-PAEC proliferation and TEER compared to EMV, indicating that select transcellular communication pathways via EMV are altered in CF. Along these lines, EMV and CEC were increased in peripheral blood of CF patients and inversely correlated with select respiratory indices. In an attempt to uncover molecular signatures of CFTR dysfunction in EC, we evaluated microRNA expression in PAEC and CF2-PAEC. CF2-PAEC, as well PAEC exposed to CFTRinh-172, expressed lower amounts of miR-216a-5p and 19a-3p, whereas they were enriched in miR-197-3p, 409-3p, 126-5p and 181b-5p. CFTRinh-172-treated PAEC also overexpressed (over two fold) miR-223-3p and 195-5p, whereas miR-376c-3p, 181a-5p, 216a-5p and 19b-3p were downregulated. Remarkably, agents that increase cAMP levels, such as type III and IV phosphodiesterase inhibitors and beta adrenergic receptor agonists, corrected TEER and monolayer integrity of CF-PAEC.

Spin-off for research & clinical purposes. Our results encourage further studies on miRNA and transcellular communication pathways as well as on the clinical utility of cAMP-increasing drugs to improve endothelial dysfunction in CF.

Acknowledgment. FFC#23/2014: funded by FFC, supported by Donazione privata, Delegazione FFC di Reggio Calabria, Delegazione FFC di Rovigo, Delegazione FFC di Taranto a Carmen La Gioia, Delegazione FFC di Imola e Romagna.

References