Evaluation of the biological and therapeutic properties of mesoangioblasts-vessel associated progenitor cells in the cell based therapy of the cystic fibrosis disease

Vezzali C1, Celesti G1, Bonfanti C1, Antonini S1, Barone C2, Pesce E4, Tomati V4, Maiuri L3, Egan M2, Pedemonte N4, Bruscia E2, Messina G1

1University of Milan, Dept. of Biosciences, Milan, Italy; 2Yale University, School of Medicine, New Haven (CT), USA; 3IERFC, Ospedale San Raffaele, Milan, Italy; 4Gaslini Institute, Genova, Italy. (Grant No. FFC#6/2015) [doi.org/bwjv]

Keywords: Cystic Fibrosis, Mesoangioblast progenitor cells, Cell-based Therapy

Background. Since the CFTR gene was cloned in 1989, several strategies for correction of CF lung disease have been explored. Among these, cell-based approaches are under investigation. Endogenous lung stem and progenitor cells have been studied although their contribution in the amelioration of chronic lung diseases is still debated. Stem cell-based approaches to treat CF have not achieved the efficiencies of delivery and engraftment needed for therapy. The reasons rely in the low cell engraftment in the lungs after systemic administration, in the small percentage of differentiated cells in airway epithelia and in the even less percentage of CFTR expression.

Hypothesis and objectives. During our recent works on a class of mouse progenitor cell derived from vessel, named mesoangioblasts4 (mMABs), we observed that mMABs, when systemically transplanted in healthy mice distribute throughout lung, trachea and intestinal epithelium for up to 2 months. The major aim of this study was the evaluation overtime of the engraftment of adult mMABs transplanted in CF mice, in terms of percentage of engraftment and persistence in time. As a parallel purpose, mMABs have been studied in terms of their ability to differentiate in epithelial cells and to express functional CFTR in transplanted CF mice, thus resulting in a general amelioration of the pathology. The whole study aimed to develop a cell therapy approach for patients affected by CF.

Methods. The therapeutic properties of mMABs were tested in F508del-CFTR and KOCftrtm1UNC mouse models. Functional rescue of CFTR was evaluated in vivo by measuring the nasal potential difference across the nasal epithelium (NPD) and ex vivo at intestinal level, by Ussing chamber. Inflammatory status after MAB transplantation was investigated in CF mice by ELISA and qRT-PCR. Moreover, MAB capability to differentiate in different epithelial cells was studied, both in vitro and in vivo, by immunofluorescence and qRT-PCR. Human derived MABs were also tested for CFTR expression and activity, by WB and Ussing chamber, this latter in co-culture with CFTR-mutated Human Bronchial Epithelial cells (HBE).

Results. We observed that mMABs engraft lung, tracheal and intestinal epithelium for up to 6 months in F508del CFTR mice after a single systemic injection. We also verified that mMABs are able even in vitro to potentially express a functional CFTR channel. Most importantly, in vivo, mMAB transplanted KOCftrtm1UNC mice express a functional CFTR. Notably, when transplanted and engrafted in the epithelium, mMAB express typical epithelial markers, thus demonstrating mMAB ability to differentiate in epithelial cells. Finally, the first studies on human MABs demonstrated their ability to express a functional channel.

Spin-off for research & clinical purposes. This project confirmed the therapeutic value of MABs for the development of an efficacious in vivo cell therapy for the cure of CF.


References


