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Abstract  
Dragmacidin D, a bis(indole) alkaloid was isolated from deep water marine sponge in 1992 and 1998. 
The structural feature consists of two unsymmetrically substituted indole moiety connected through a 
pyrazinone linker and has a polar aminoimidazole moiety. Due to remarkable structural features and 
diverse biological properties, dragmacidin D has attracted attention from synthetic community. In this 
review, the syntheses of dragmacidin D for the last 13 years are briefly summarized. 
Keywords : Dragmacidin, alkaloid, marine sponge, pyrazinone. 
 
Isolation and biological activities       

Dragmacidin D, a novel bis(indole) alkaloid, was 
isolated from a deep-water marine sponge of the 
genus Spongosorites by Wright and co-workers in 
1992.1 Subsequently, Capon and co-workers 
reported the isolation and structure 
determination of dragmacidin D from a 
Spongosorites collected during a trawling 
operation off the southern coast of Australia in 
1998.2 It displays a broad array of biological 
activity including the growth inhibition of feline 
leukemia virus, fungal pathogens Cryptococcus 
neoformans and Candida albicans, and the P388 
and A549 tumor cell lines. It is also a selective 
potent inhibitor of serine-threonine protein 
phosphatases PP1 and neutral nitric oxide 
synthase (bNOS) in the presence of inducible 
NOS (iNOS). The ability of selective bNOS growth 
inhibition may be useful in a variety of 
therapeutic areas including the treatment of 
Alzheimer’s, Parkinson’s, and Huntington’s 
diseases. Beyond its biological activities, 
dragmacidin D comprises two differentially 
substituted indoles connected through a 
pyrazinone linker and a polar aminoimidazole 
unit. Due to its unique chemical structure and 
promising biological activities, it has been 
selected as a synthetic target by many chemists. 

Syntheses of  ()-dragamcidin D was reported by 
Brian M. Stoltz in 2002 using Suzuki–Miyaura 

cross-coupling reactions as key reactions,3 by 
Itami in 2011 using direct C–H coupling 
reactions5 and synthesis of key intermediate by 
Sasaki in 2011.6,7 Asymmetric synthesis was 
reported by Capon and Jia in 2015.8 

 

Brian M. Stoltz (2002)3 

Brian M. Stoltz reported the first synthesis of ()-
dragmacidin D using halogen-selective Suzuki–
Miyaura coupling reactions as key steps. The 
retrosynthetic sequences for the synthesis of 
dragmacidin D was using metal catalyzed cross-
coupling approach: synthesis of the central 
bis(indolyl)pyrazine moiety using two sequential 
palladium catalyzed Suzuki–Miyaura couplings 
between metalated indole moieties 2, 4 and 5-
bromo-2-iodo-3 methoxypyrazine 3. Formation 
of a polar, unstable aminoimidazole ring was 
planned at the late stage of the synthesis. Vinyl 
bromide derivative 5 and nitromethane could be 
viewed as four-carbon equivalent of the 
aminoimidazole moiety. The vinyl bromide could 
be connected to the indole moiety through 
another Suzuki coupling reaction followed by 
functionalization with nitromethane and the 
guanidine moiety would lead to the formation of 
the aminoimidazole unit (Scheme 1).

 
 



 

 
 

Scheme 1. Retrosynthetic planning by Stoltz 

The Suzuki–Miyaura coupling approach for the 
construction of the bis(indolyl)pyrazinone 
framework of dragmacidin D is discussed below 
(Scheme 2). Firstly, the coupling partners were 
synthesized. The synthesis of 3,4,7-trisubstituted 
indole subunit 12 was commenced with 1-
(benzyloxy)-4- bromo-2- nitrobenzene 6. 
Treatment of 6 with vinyl Grignard reagent gave 
indole 7 in 33% yield through the Bartoli indole 
synthesis. SEM protection of the indole nitrogen 
followed by the treatment with t-BuLi and 
dioxaborolane 9 produced dioxaborolanated 
indole 10 in 68% yield. Then Suzuki coupling 
between dioxaborolanated indole 10 and vinyl 
bromide 5 furnished coupling product 11 in 83% 

yield. Hydrogenation of the terminal olefin of 11 
with H2, Pd/C followed by C3-selective 
bromination, lithiation, treatment with 
dioxaborolane produced 3,4,7-trisubstituted 
indole derivative 12 in 66% yield. 5-Bromo-2-
iodo-3-methoxypyrazine (3) was synthesized 
from 5-bromo-3-methoxypyrazin-2-amine (13) 
by the treatment with HI and NaNO2 in 58% 
yield. Bromoindole boronic acid derivative 16 
was synthesized from 6-bromoindole (14) in 
three steps with good yield. N-tosyl protection of 
6-bromoindole (14) followed by treatment with 
Hg(OAc)2 generated 15 in 97% yield. Reaction of 
15 with BH3·THF/H2O provided bromoindole 
boronic acid derivative 16 in 85% yield.  
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Scheme 2. Synthesis of Suzuki–Miyaura coupling partners 

After completion of the synthesis of Suzuki–
Miyaura coupling partners, they were subjected 
to sequential Suzuki couplings for the formation 
of bis(indolyl)pyrazine 18. The Suzuki coupling 
between 5-bromo-2-iodo-3-methozxy pyrazine 
(3) and 6-bromo-N-tosylindole-3-yl boronic acid 

16 proceeded smoothly to give the selective 
coupling product 17 in 71% yield. The next Suzuki 
coupling between bromopyrazine 17 and pinacol 
boronate 12 furnished the desired 
bis(indolyl)pyrazine 18 in 82% yield.  

 
 

 
 

Scheme 3. Completion of (±)-dragmacidin D synthesis 
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Bis(indolyl)pyrazinone 18 was converted to 
aldehyde 19 through two step sequence. 

Aldehyde 19 was then transformed into -
nitroketone 20 using CH3NO2 folowed by Dess–
Martin oxidation in 98% yield. Removal of the N-
tosyl protecting group using ethanolic KOH 
followed by LiBF4 promoted hydrolysis of N-SEM 

provided 21 in 99% yield. Reduction of the -

nitro to an -amino group using SnCl2 followed 
by iodotrimethylsilane (TMSI) mediated removal 
of the O-benzyl and methyl ethers were 
accomplished in 86% yield. Finally, the 

conversion of the -aminoketone to an 
aminoimidazole moiety by the treatment with 
NH2CN followed by CF3CO2H led the completion 

of ()-dragmacidin D in 86% yield. 
 
Itami and Yamaguchi (2011)5 

In the first synthesis of ()-dragmacidin D, Stoltz 
used Pd(0)-catalyzed Suzuki–Miyaura cross-
coupling reactions as the key reactions. It can be 
emphasized that the cross-coupling reaction is 
one of the most reliable method for the 
formation of C–C bonds in total synthesis as 
exemplified by Stoltz’s work. However, several 
steps are required for the activation of both 
coupling partners (organometalics and organic 
halides) prior to cross coupling. Recently, 
adapting the concept of “cross-coupling” into 
“direct-coupling” has shed new light in the field 
of organic synthesis.4 Aiming for a step-

economical synthesis of dragmacidin D, Itami et 
al have planned to convergently connect its 
building blocks using direct C–H couplings. The 
retrosynthetic planning is shown in Scheme 4. 
Dragmacidin D has a bis(indolyl)pyrazinone unit 
at its core and a polar aminoimidazole moiety. 
The aminoimidazole unit is connected to the C4 
position through a sp3 carbon bridge. The most 
direct way to install the two-indole moieties on 
to the central pyrazinone is C–H/C–H coupling 
reaction. To enhance the reactivity and to 
control the regioselectivity in the coupling, it was 
planned to capitalize on the tautomeric switch 
between pyrazinone and pyrazine N-oxide. 
Firstly, connecting the indole derivative 22 with 
the most acidic C2-carbon of pyrazine N-oxide 23 
was planned through an indole–azine C–H/C–H 
coupling reaction. The installation of 6-
bromoindole on the pyrazinone form could be 
envisioned through an oxidative Friedel–Crafts-
type C–H/C–H coupling reaction. This sequence 
was designed so that the oxidation state of the 
central pyrazine moiety would remain unaltered 
throughout the synthesis. On the other hand, the 
thiophene moiety with an oxygen substituent at 
C3 position could be envisaged as a four-carbon 
unit equivalent of the aminoimidazole side chain. 
Thiophene derivative 25 could be then 
connected to the indole moiety through a C4-
selective thiophene–indole C–H/C–I coupling 
reaction.  

 
 

 
 

Scheme 4. C–H coupling strategy for the synthesis of dragmacidin D 
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Crafts type C–H/C–H coupling. Synthesis began 
with the iodoindole derivative 27, which was 
easily synthesized through a known four steps 

from the commercially available 7-
(benzyloxy)indole. Final sequence toward 
dragmacidin D synthesis is shown in Scheme 5.

 
 

 
 

Scheme 5. Synthesis of ()-dragmacidin D 
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accounted from the low reactivity of indole 31 at 
C3 position. The low reactivity of indole 31 at C3 
position could be explained on the basis that the 
C4 ketomethyl moiety sterically and 
electronically opposed the functionalization at 
the C3 position of indole. However, the starting 
materials, indole and pyrazine N-oxide were 
recovered quantitatively, and can be resubjected 
for the C–H/C–H coupling reaction to furnish the 
coupling product in 50% yield. Despite the 
moderate yield, the reaction produced the 
coupling product regioselectively. Treatment of 
the coupling product with trifluoroacetic 
anhydride furnished the C2-pyrazinone 33. 
Notably, the ratio of desired pyrazinone 33 over 
the undesired regioisomeric pyrazinone was 5:1. 
The Friedel–Crafts type oxidative C–H/C–H 
coupling reaction between (indolyl)pyrazinone 
33 and 6-bromoindole in the presence of 
CF3SO3H and air at 80 ºC afforded the coupling 
product bis(indolyl)pyrazinone 34 with 
concomitant removal of the two MOM groups in 
57% yield after two steps. The next aim was to 
install a polar aminoimidazole moiety to 
complete the synthesis of dragmacidin D 

(Scheme 5). For this purpose, firstly the -

bromination of ketone moiety of 34 gave -
bromo ketone 35.  Indole 34 was treated with 
excess of TMSOTf in the presence of i-Pr2NEt to 
produce the corresponding silyl enol ether. The 
silyl enol ether was then selectively brominated 
using N-bromosuccinimide in the presence of 

CF3CO2H to provide -bromoketone 35. Finally, 

the transformation of a -bromoketone to N-Boc 
aminoimidazole moiety using (Boc)guanidine   
followed by CF3CO2H mediated deprotection of 

the Boc group led to the completion of ()-
dragmacidin D synthesis efficiently and step-
economically in a total of 15 synthetic 
operations. 
 
Makoto Sasaki (2008, 2011)6,7 

Makoto Sasaki reported the synthesis of the left-
hand fragment of dragmacidin D followed by the 
synthesis of key advanced intermediate toward 
the synthesis of dragmacidin D using sequential 
Sonogashira and Suzuki–Miyaura coupling 
reactions in 2008 followed by 2011. 

 
 

 
Scheme 6. Sasaki’s synthetic strategy for dragmacidin D 
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The synthetic strategy is comprised of a final 
stage asymmetric hydrogenation of the alkene 
moiety of intermediate 36 for the incorporation 
of an asymmetric carbon center at C6”’ in 
dragmacidin D (Scheme 6). The central 
pyrazinone ring in 36 could be formed via 
Staudinger/aza-Wittig reaction followed by 
oxidation of 37. Acylation of azidoamine 39 with 
oxaacetylchloride 38 could lead to the formation 
of 37. Azidoamine 39 could be formed via Suzuki 
coupling between imidazolylboronic acid 40 and 
indolylvinyl bromide 41, which in turn could be 
synthesized from 4-bromo-7-methoxy indole 
through Sonogashira coupling followed by 
Mannich-type Friedel–Crafts reaction.  
 
For the synthesis of advanced intermediate 37, 
Suzuki–Miyaura coupling partners 40 and 41 

were synthesized (Scheme 7). The imidazole 
nitrogen was protected using methoxymethyl 
chloride to give the N-MOM imidazole 44 in 99% 
yield. Treatment of N-MOM imidazole with n-
BuLi followed by diphenyldisulfide at –78 ºC 
produced the phenylsulfide imidazole 45 in 62% 
yield. Next, reaction of phenylsulfide imidazole 
with n-BuLi followed by trimethyl borate and 
acidic work-up furnished imidazole boronic acid 
derivative 40 in 77% yield.  In the synthesis of 
indolylglycine fragment 46, 4-bromo-7-methoxy-
indole (42) was reacted with p-anisidine and 
ethyl glyoxylate in CH2Cl2 to produce 46 in 83% 
yield. Tosyl protection of the indole nitrogen 
followed by removal of the amine protecting 
group using cerium ammonium nitrate (CAN) 
furnished amine 48. Then, the free amine group 
was protected as an N-Boc group using Boc2O.

 

 
 

Scheme 7. Synthesis of Suzuki–Miyaura coupling fragments 
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The Sonogashira coupling between 4-
bromoindole derivative 49 and 
ethynyltriisopropylsilane delivered the coupling 
product 50 in 92% yield. Tetra-butylammonium 
fluoride-facilitated deprotection of 
triisopropylsilyl group followed by bromination 
of the alkyne moiety using HBr·CH3CO2H afforded 
vinyl bromide 41, the precursor of the 
subsequent Suzuki–Miyaura coupling reaction. 
The Suzuki–Miyaura coupling reaction between 

vinyl bromide 41 and imidazole boronic acid 40 
delivered the coupling product 52 in 61% yield. 
Then, the carboxylic ester of 52 was reduced to 
primary alcohol using LiBH4 followed by tosyl 
protection of alcohol in 61% yield. Replacement 
of OTs group by azide using NaN3 delivered azide 
54. CF3CO2H facilitated N-Boc deprotection 
followed by condensation with oxaacetylchloride 
led the synthesis of advanced intermediate 37.

 

Scheme 8. Synthesis of an advanced intermediate toward the synthesis of dragmacidin D 

Asymmetric Synthesis: Capon and Jia (2015)8  

 
During the isolation and structure elucidation of 
dragmacidin D by Capon and co-workers in 1998, 
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stage of synthesis from bis(indolyl)pyrazinone 
55. The central pyrazinone unit of compound 55 
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condensation between indole moiety 56 and 6-
bromoindole acid chloride 38 followed by 
oxidative aromatization. Compound 56 could be 
synthesized from 57 using known chemistry. The 
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Scheme 9. Retrosynthetic Analysis for Asymmetric Synthesis 

 Asymmetric synthesis is commenced with the 
reaction between 2-iodo-6-benzoxyaniline 61 
and butaldehyde 60 in the presence of Pd(OAc)2 
to give indole 62 in 70% yield. N-Boc protection 
of indole N-H using (Boc)2 followed by 
chemoselective iodination at C-4 position of 
indole using NIS in the presence of AcOH 
produced 4-iodoindole 63 in 88% yield. Heck 
reaction between 63 and Evan’s chiral auxiliary 
derivative 64 in presence of Pd(OAc)2, Ag2CO3 
under ligand-free conditions gave 58 in 82% yield 
(E/Z 7:2, which are not separable using flash 
column chromatography). Reaction of 58 with 
methyl cuprate generated from MeMgBr and 
CuBr2·SMe2 followed by removal of Evan’s chiral 
auxiliary using MeOMgBr generated the desired 
methyl ester 57 in 90% yield. The newly 
stereogenic center is formed in this reaction and 
the configuration was confirmed S. Compound 
57 was converted to amine 56 in seven step 
sequence in 63% yield. Compound 57 was 
treated with HF·pyr to deprotect the OTBDPS 
group followed by Mitsunobu reaction with PPh3 
and diphenylphosphoryl azide (DPPA) generated 
the corresponding azide. Staudinger reduction of 
azide using PPh3, deprotection of indole N-Boc 
using TFA, selective Boc protection of primary 
amine using (Boc)2O followed by reaction with 

DDQ/TMSN3 and reduction of azide using 
NaBH4/NiCl2 generated amine 56. Condensation 
of amine 56 with 6-bromoindole oxalyl chloride 
38 followed by dprotection of NHBoc using TFA 
and DDQ promoted oxidative aromatization 
generated (bisindolyl)pyrazinone 55 in 50% yield. 
For the installment of aminoimidazole moiety 
final three-step sequence was followed. 
Pyrazinone 55 was reacted with pyrazole-1-
carboxamidine 66 in presence of Et3N, DMAP to 
generate 67 in 80% yield. Reduction of methyl 
ester using DIBAL-H generated aza-hemiacetal, 
which in presence of TFA formed the 
aminoimidazole ring followed by removal of SEM 
protection produced pyrazinone moiety. Finally, 
deprotection of OBn group using BBr3 completed 
the asymmetric synthesis of (+)-dragmacidin D in 
20% yield.  
 
Conclusion  

During last 13 years, the synthetic road for the 
synthesis of novel bis(indole) alkaloid 
dragmacidin D was garnished by various kinds of 
exciting chemistry. Since the first isolation of 
dragamcidin D in 1992, first synthesis of  
(±)dragmacidin D by Stoltz in 2002, efficient 15 
step synthesis of (±)dragmacidin D by Itami in 
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2011. In 2015, Capon and Jia confirmed the 
absolute configuration of setereogenic center of 
dragmacidin D to be R via the completion of 

asymmetric synthesis of dragmacidin, which 
would lead to the detailed study of biological 
properties in future.

 

 
 

Scheme 10. Asymmetric Synthesis of Dragmacidin D 
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