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Abstract 
Protein phosphorylation ensures the accurate sequence of events underlying multiple signaling 
pathways, such as cell survival and cell proliferation. Using a combination of cell biology and molecular 
techniques, Vera et al. [20] have discovered an active role of Greatwall kinase in cell proliferation, 
transformation and invasiveness of human cancers through the Akt pathway, one of the most 
acknowledged oncogenic signaling networks in cells. This paper opens new horizons for human 
therapies in which Greatwall kinase can be used as a potential oncogenic marker and/or as a potential 
therapeutic target in aggressive human cancers. 
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Introduction 

Cells are exposed to a plethora of extracellular 

signal, internalized and processed by complex 

signaling pathways and resulting in a specific 

biological response that is crucial for cell survival. 

It is largely known that most of the cell signaling 

pathways are tightly regulated by reversible 

post-translational modification events [1,2]. For 

instance, a delicate balance between protein 

phosphorylation and dephosphorylation is 

essential to ensure cell division and cell 

proliferation. The derangement of this 

equilibrium has been extensively linked to 

tumorigenesis and pathological disorders. Of 

note, most identified oncogenes are encoded by 

protein kinases and the majority of the tumor 

suppressors are phosphatases that 

counterbalance kinase activity. Therefore, 

deciphering how phosphorylation mechanisms 

orchestrate physiological processes such as cell 

division, migration and proliferation are essential 

not only for understanding human diseases but 

also for developing anti-cancer treatments and 

designing novel cancer therapies.  

One of the most important oncogenic signaling 

cascades in which successive events of protein 

phosphorylation are highly relevant is the 

phosphoinositide 3-kinase (PI3K)/Akt/ 

mammalian target of rapamycin (mTOR)-

dependent pathway [3-6]. In this tremendous 

and tangled pathway, Akt is the most studied 

serine/threonine kinase because it acts as an 

epicenter of this network [7]. A blooming 

research work has shown that Akt plays a 

decisive role in cell survival, growth, migration, 

proliferation and cell cycle progression, 

determining cell fate mostly by regulating 

fundamental cell transcription factors [3,8-9]. 

Importantly, a constitutively activated form of 

Akt leads to cell cycle deregulation and 

uncontrolled cell proliferation, which are 

hallmarks of many human cancers. 

Hyperactivation of Akt has been found in cell 

models of renal, breast and prostate cancer [10-

12].  

In response to extracellular signals and growth 

factors, Akt is activated, reaching its maximal 

activity when phosphorylated on two residues: 

threonine 308 and serine 473 [3,13]. In spite of 

papers addressing a spectrum of kinases and 
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phosphatases governing the on-off switch for Akt 

activity such as glycogen synthase kinase-3 

(GSK3), protein phosphatase 2A (PP2A), PH 

domain and leucine-rich repeat protein 

Phosphatases (PHLPP) (explained in the next 

section) have been emerged, not all pieces are 

placed in this intricate puzzle [14-19]. In a recent 

paper [20], outstanding findings underlying Akt 

and cell survival have been highlighted. Vera and 

colleagues have discovered a new pathway 

controlling ‘GSK3-PHLPP-Akt’ activities in cells in 

which the mitotic Greatwall (Gwl) kinase is 

critical [20]. This is the first study showing that 

Gwl could be a potential drug for human cancer 

therapies. 

 

Authors’ Results 

In 2004, the Gwl kinase was identified as a 

mitotic kinase in Drosophila [21,22]. Later on, in 

2009, the Castro and Lorca group demonstrated 

that the classical activation of cyclin B-CDK is 

mediated by the regulation of the phosphatase 

PP2A in a complex with B55 regulatory subunit 

(PP2AB55), which is ultimately a target of Gwl in 

Xenopus egg extracts [23]. These observations 

were also validated in the mammalian Gwl 

homolog Microtubule Associated Serine 

Threonine Kinase Like (MASTL) [24,25]. 

PP2A is one of the main serine-threonine 

phosphatases involved in controlling multiple 

cellular signaling pathways in mammalian cells 

[26,27]. PP2A is considered as a tumor 

suppressor [28-30]. It has been shown that PP2A 

promotes cell survival by negatively regulating 

different signaling networks such as the PI3K-Akt 

pathway [2]. Accordingly, loss of PP2A activity 

mediates oncogenesis by activating the PI3K-Akt 

routes [2]. 

Biochemical studies in Xenopus showed that 
PP2AB55 inhibition by Gwl protein kinase is not 
direct, rather mediated by its substrates: cyclic 

adenosine monophosphate-regulated 
phosphoprotein 19 (Arpp19) and α-Endosulfine 
(ENSA) [31,32]. Gwl-Arpp19/ENSA-PP2AB55 
pathway is conserved through evolution as 
reported in Drosophila, budding yeast and plants 
[33-35].Further, Vera et al. have reported that 
Gwl has an overpowering function during cell 
survival, proliferation and human malignancies 
through regulation of Akt [20]. Notably, they 
have found that overexpression of Gwl not only 
promotes cell proliferation, migration, invasion 
via its kinase activity in breast and colon cancer 
cells but also promotes transformation in 
primary human fibroblasts. In addition, 
overexpression of Gwl promotes tumor growth 
in a xenograft mouse model in vivo [20]. Using 
human phosphor-kinase array technology, they 
analyzed the phosphorylation of 43 different 
kinases involved in different oncogenic pathways 
upon Gwl overexpression or silencing. These 
experiments uncovered that Gwl overexpression 
triggered dephosphorylation of the inhibitory 
sites of the GSK3, promoting its activation, and 
subsequent increase of Akt phosphorylation in 
S473. In addition, the Gwl knockdown caused a 
decrease in Akt phosphorylation at S473. 
Further, they demonstrated that Akt inhibition is 
sufficient to revert the Gwl overexpression 
phenotypes in all the tested cell lines. 
In vitro kinase assays indicated that Gwl kinase is 
not the direct kinase that phosphorylates Akt at 
S473. Then, the authors asked if Gwl modulates 
Akt indirectly through well-known regulators of 
Akt such mTOR2, [36] and PHLPP, [37]. Briefly 
summarizing, using different experiments, Vera 
et al. showed that neither decreased PP2AB55 
activity through Arpp19/ENSA overexpression 
nor increased mTOR2 activity mediates 
oncogenic Gwl functions through Akt. They 
rather pointed out that Gwl-dependent increase 
of Akt phosphorylation levels is due to a drastic 
reduction in PHLPP, the phosphatase responsible 
for Akt dephosphorylation at S473 (Figure). It is 
worth mentioning that PHLPP is degraded by the 
proteasome upon phosphorylation by GSK3, a 
kinase that the authors found highly activated 
upon Gwl overexpression. This lead them to 
investigate if Gwl could have an impact on GSK3 
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activity and therefore on PHLPP levels and Akt 
dephosphorylation at S473. Indeed, this seems to 
be the case. Thus, Vera et al. results demonstrate 
that Gwl hits PHLPP levels through GSK3 activity 
and consequently regulates Akt-phosphorylation 
status. 
 

 

 
In conclusion, Vera et al. paper revealed a new 
substrate of Gwl kinase and a new pathway 
‘GSK3-PHLPP-Akt’ in which the Gwl kinase 
contributes to cell transformation and invasion. 
Because of the implications of this pathway in 
cell survival and carcinogenesis, this is an 
outstanding breakthrough since Gwl could foster 
novel cancer therapies. For example, drugs that 
inhibit Gwl could be used as a new therapeutic 
target. 
One important issue that remains unsolved for 

the future is how Gwl exactly controls GSK3 

activity. Challenging future research will 

contribute to better understanding of the 

fascinating mechanisms underlying Gwl 

regulation that facilitates proliferation and 

oncogenic processes through Akt and GSK3. The 

excellent and distinguished research by Vera in 

Castro and Lorca laboratory about Gwl–Akt 

signaling pathway in human malignancies 

highlights the tight phospho-regulatory 

mechanisms that govern signaling pathways 

inside the cells for successful cell growth and 

survival.  
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