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Abstract

Mutations in the Schwachman-Bodian diamond syndrome (SBDS) gene—involved in ribosome
biogenesis—cause Shwachman-diamond syndrome (SDS), a known bone marrow failure
disorder. A dysfunctional ribosome biogenesis is postulated as a cause of phenotypes seen in
SDS patients. Recently, lymphocytes from SDS patients with hypomorphic SBDS expression were
shown to harbor significantly increased DNA damage and yYH2AX foci in response to X-rays or
gamma rays. Additionally, SBDS knockdown in cells increases ROS (reactive oxygen species)
levels and enhances proliferation defects in a p53 dependent manner. These new reports
suggest that SBDS may have a novel and a yet unexplored role in DNA repair and damage
response pathways. In this short opinion article, | will discuss these recent observations and
delineate hypothesis to explain the potential new roles of SBDS.
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What is Shwachman-diamond syndrome
(SDS)?

SDS (SDS, OMIM 260400) is an autosomal
recessive disorder characterized by exocrine
pancreatic insufficiency, skeletal
deformities, bone marrow failure and
leukemic predisposition % It is a multi-
system disorder that occurs in about
1/75,000 individuals, with a male to female
ratio of 1.7:1 **. Over 95% of SDS patients
harbor biallelic mutations in the SBDS gene
located on chromosome 7q11 . The SBDS
protein belongs to a conserved protein
family with orthologs from Archae to
vertebrates and plants °. SDS patients
exhibit reduced expression level of SBDS,
which plays an important role in ribosome
assembly ’. Defective ribosome biogenesis
is proposed to cause the diverse clinical
features of SDS patients, although an exact
mechanism is not known. In light of the new
phenotypes observed for SBDS, the
underlying cause of SDS pathophysiology
may encompass more causative factors
than just the defective ribosome biogenesis.
| will explore some of these hypotheses in
the following sections.

Phenotypes associated with SDS patients
SDS patients present characteristic physical
manifestations such as short stature,
skeletal deformities, exocrine pancreatic
insufficiency and hematological deformities.
Primary diagnosis of SDS occurs during
childhood, where some patients experience
learning disabilities. Summarized details of
some important physical symptoms in SDS
patients are discussed below:

Skeletal deformities: About half of the SDS
patients present with metaphyseal dystosis
(developmental delay of long bones)
involving the hips and the femur 2. Another
one third to one half of patients report rib-
cage abnormalities, which includes short
ribs with flared ends, narrow rib-cage and a
chostochondral thickening (pertaining to
costal cartilages) leading to respiratory
failure >°. Most skeletal problems seen in
patients associate with delayed appearance
of the secondary ossification centers,
excluding, clinodactyly (curved little finger),
syndactyly (webbing between digits),
osteopenia (decreased bone density),
kyphosis (forward bent spine), scoliosis
(lateral curved spine), vertebral collapse,
slipped femoral epiphyses (rounded end of
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long bone) and supernumerary (extra)
thumb “*°.

Exocrine  pancreatic insufficiency:  SDS
patients are deficient in pancreatic digestive
enzymes such as trypsinogen, isoamylase,
etc., causing mal-absorption of fats and
nutrients . Mal-absorption of nutrients
results in vitamin deficiency, characteristic
loose stool, weight loss, edema and a
general failure to thrive. While the serum
level of pancreatic enzymes serves as a
diagnostic tool for SDS patients, the ultra-
sound and other imaging techniques can
additionally confirm the presence of fatty
pancreas in patients L

Hematological abnormalities: Neutropenia
or abnormal-low levels of neutrophils are a
characteristic abnormality seen in SDS
patients and its onset can be as early as the
neonatal stage 812 However, neutropenia
fluctuates from low to normal levels during
the lifetime of the patient ™. Neutrophils
of SDS patients additionally exhibit impaired
mobility, migration, chemotaxis and an
altered cytoskeletal function “%/. Low-
levels of neutrophils thus increase patients’
susceptibility to recurrent bacterial, fungal
and viral infections, including respiratory
and skin infections *®. Although multiple B
and T- cell defects reported in patients
could also contribute to immune
dysfunction **°.

Other blood cell irregularities seen in SDS
patients include, anemia (from low
reticulocyte  counts), elevated fetal-
hemoglobin, thrombocytopenia (low
platelet counts) and sometimes even the
trilineage cytopenia (reduction in all blood
lineages—red cells, white cells and
platelets) “*"*%. Patients with the observed
cytopenias may evolve into aplastic anemia,
myelodysplastic syndrome (MDS) or acute
myeloid leukemia (AML) and may require
transfusions “****?°. The bone marrow of
SDS patients also display decreased
frequencies of CD34" progenitor stem-cells,
reducing the in vitro generation of
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hematopoietic colonies of all cell lineages
26

Genetics of Shwachman-diamond
syndrome

That mutations in SBDS—a novel gene—
associate with SDS is a fairly recent
discovery >*.  SBDS spans 305 kb on
chromosome 7 and is distally located to its
unprocessed pseudogene, SBDSP, which
97% identical to SBDS °. About 96% of SDS
patients carry mutations in exon 2. The
most prominent of these mutations are:
183-184TA—CT (introduces an in-frame
stop codon, K62X), 258+2T—C (disrupts
donor splice site of intron 2 causing a 8-bp
deletion after an upstream cryptic splice
donor site is used, which causes premature
truncation of the encoded protein), and the
complex 183-184TA—CT+258+2T—C
mutation, amongst the others reported in
SDS patients >. Most of these mutations
arise from recombination between SBDS
and the SBDSP by gene conversion events.
SBDS is ubiquitously expressed and is an
essential gene . Since homozygous allele
mutations are not known in SDS patients,
SBDS may also be essential in humans. It is
unknown how these mutations correlate
with the pleiotropic phenotypes in SDS
patients. Because SDS patient cells acquire
chromosomal changes during their lifetime,
absence of SBDS is speculated to cause the
leukemia transformation in patients 2.

The first crystal structure of the SBDS
homolog, AF0491 (Archaeoglobus fulgidus),
revealed it to comprise three well-folded
domains: N-terminal domain, central
domain and the C-terminal domain *°.
Likewise, the human SBDS protein contains
the same three domains, except for the
flexible connecting loop between the N-
terminal domain and the central domain *%.
Patient-associated mutations in SBDS
localize at the N-terminal domain *. In
human cells, SBDS localizes to the nucleolus
during G1 and G2 phases of the cell cycle
and depends on active transcription **3*.
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Known functions of SBDS

Defective Hematopoiesis: Hematopoietic
progenitors from SDS patients have reduced
colony formation in vitro *%. siRNA
knockdown of SBDS in CD34" stem cells,
early progenitors and K562 cells also
impairs  erythroid  differentiation  *°.
Similarly, siRNA knockdown of Shds in
murine hematopoietic cells causes defective
granulocytic differentiation and myeloid
progenitor generation, and reduced B-
lymphocyte numbers **. These examples
associate the loss of SBDS with the
phenotypes seen in SDS patients. However
the molecular mechanism linking SBDS to
hematopoiesis remains unknown.

Ribosome biogenesis: SDS is recognized as a
ribosomopathy, a condition where a
defective assembly of ribosomes leads to
growth and cell proliferation defects *"*°.
Evidence of the role of SBDS protein in
ribosome biogenesis first came from the
proteome and transcriptional microarray
data that showed binding of yeast ortholog,
YLR022c, to phospholipids and RNA
processing enzymes 04 For ribosome
biogenesis, SBDS protein takes part with
EFL1 (elongation factor-like 1) GTPase to
release elF6 (eukaryotic initiation factor 6)
from the 605 ribosomal subunit 2. The elF6
protein is a critical factor for late
maturation of 60S ribosomes in the
cytoplasm. elF6 associates with the 60S
ribosome and prevents its binding to the
40S ribosome subunit by steric hindrances
4344 SBDS stimulates the GTP hydrolysis of
EFL1 to release elF6 from the 60S ribosome
445 The exact mechanism of EFL1 and
SBDS-mediated removal of elF6 is also
unknown. In the absence of SBDS, elF6 is
not released from the 60S subunit, which
fails to reconstitute with the 40S to produce
the 80S ribosomes. Such ribosome joining
defects can be profiled in a sucrose
gradient, which then shows altered 60:80
ratios as is seen in SBDS deficient SDS
lymphocytes or stromal cells, mouse cells,
or even amoeba (Dictyostellium

. . 42,46,47
discoideum) """, Because of the reduced

formation of the 80S ribosomes, SBDS
mutant cells exhibit translational
inefficiency and reduced global protein
synthesis *. Altered ribosome biogenesis is
thus associated with growth impairment,
which is also postulated as a cause of
hematopoiesis.

Other SBDS functions: Besides the defective
ribosome biogenesis phenotype observed in
SBDS-deficient SDS cells, other novel SBDS
phenotypes have now come to light. For
example SBDS depletion: 1) in Hela cells
exhibit  accelerated Fas-ligand-induced
apoptosis, 2) in human skin fibroblasts
results in increased mitotic abnormalities
and aneuploidy that was also seen in SDS
cells, 3) in SDS neutrophils causes
chemotaxis defect, 4) in murine monocytes
formed reduced number and size of
osteoclasts, 5) in SDS bone marrow shows
p53 overexpression, 6) in myelocytes
activate p53 and hence apoptosis, 7) in
lymphoblastoid cells alters translation of
CCAAT enhancer binding proteins C/EBPa
and C/EBPB that affects granulocyte
differentiation, 8) in B-cells and SDS
leukocytes  hyperactivation of mTOR
(mechanistic target of rapamycin) and
STAT3 (Signal transducer and activator of
transcription 3), 9) in Hela and myeloid
cells increases ROS levels, 10) in SDS
lymphocytes causes radiosensitization ***®
>’ All these phenotypes are ascribed as
causative factors in enhanced cell death or
skeletal deformities or as leukemogenesis
facilitators causing SDS phenotypes.

The most intriguing aspect of these new
functions of SBDS is that they reflect a
common theme of genomic instability,
increased cell death via apoptosis, p53
activation and suppressed translation.
While the ribosomopathies such as the DBA
(Diamond-Blackfan anemia) are also
characterized by increased p53 activation
via RPL11 (60S ribosomal protein L11) and
RPL5 (60S ribosomal protein L5) with a
dysfunctional translation, but genomic
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instability is not associated with DBA or
other ribosomopathies *. Likewise a similar
p53 induction pathway in SDS is unknown,
making SDS a unique ribosomopathy.
Because a lack of SBDS results in both
ribosome biogenesis  and genomic
instability, the compelling questions is
whether these phenotypes are caused by
independent functions of SBDS. Could it be
possible that absence of SBDS results in
dysfunctional ribosome biogenesis, which
then causes the genomic instability
phenotype or vice versa? Since SBDS
knockdown causes genomic instability, does
SBDS have a role in DNA repair? And finally,
if the SDS lymphocytes accumulated DNA
damage, can SDS be categorized as a
radiosensitive disorder?

What are radiosensitivity disorders?

As many as 40 DNA-repair-defective
disorders are associated with
radiosensitivity **®. The most prominent of
these are the autosomal recessive A-T
(Ataxia-telangiectasia with mutations in the
ATM gene), NBS (Nijmegen breakage
syndrome with NBS1 gene mutations), FA
(Fanconi Anemia with mutations in about 1
of its 21 genes), LIG4 (DNA Ligase IV
deficiency disorder with mutations in LIG4
gene), SCID (Severe combined
immunodeficiency disease with mutations
in  Artemis, LIG IV, DNA-PKcs [DNA-
dependent protein kinase catalytic subunit]
and Cernunnos-XLF). Each of these
disorders is characterized by homozygous
mutations in genes involved in DNA repair.
And in all cases, patients exhibit enhanced
sensitivity to radiation, except for the
heterozygous individuals who have a higher
radiosensitvity threshold. Patients with
these disorders, similar to SDS patients,
present with immunodeficiencies, growth
retardation and cancer predisposition. In
addition, accidental radiation exposure
poses a high risk to these radiosensitive
patients and radiotherapy in particular
becomes a challenging treatment regimen
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59,61 .
to treat cancers %, Interestingly,

radiosensitivity phenotype can also be
conferred by mutations in genes, which
have functions beyond DSBR, such as
SMARCAL1 that is associated with Schimke
immuno-osseous dysplasia (SIOD) *%.
Whether SDS patients’ lymphoblastoid or
other cells are also radiosensitive, as would
be in a radiosensitivity (colony survival
assay (CSA)) assay is not known %. Recently,
Morini et.al., showed that two SDS patient
lymphocytes carried more oxidative DNA
damage and possible single strand breaks
via a COMET assay °’. The authors also
observed an enrichment of yH2AX foci
formation in two of these SDS cell lines
compared to controls, which indicate either
a BER (base excision repair) or a DSBR
(double strand break repair) deficiency.
However, a confirmed radiosensitivity
phenotype in SDS cells couldn’t be
established from this study. By including
more patient data, testing patient’s cells in
the CSA assay; and assessing both the BER
and DSBR repair capacity in patient cells,
can allow researchers clarify this assertion.
Nevertheless, other independent studies
have also hinted at the possibility of SDS as
a radiosensitivity disorder.

First, in the murine Sbhds disease model—
which  is  embryonically lethal—the
senescence phenotype seen in the
embryonic pancreas is p53 dependent ®*.
The authors also observed that p53 ablation
surprisingly  rescued the embryonic
lethality. p53 is a global genome regulator
and plays an important role in different
DNA repair pathways, including excision
and double strand break repair (DSBR) ®. In
the context of DSBR—associated with
YH2AX foci formation—deficiency of DNA
repair factors such as XRCC4, LIG3 (Non-
homologous end joining repair), etc., causes
p53 upregulation and apoptosis °>°,
Additionally, p53 regulates RAD51
expression which is an important factor for
homologous recombination dependent
DSBR *’. These examples suggest that the
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increase in p53 expression in SBDS deficient
cells could result from persistent double
strand breaks because SBDS protein may
have an important role in DSBR.

Second, SBDS was shown to functionally
bind to diverse proteins including DNA-PK
and RPA, involved in the DSB repair .
Strikingly, the authors observed that
knockdown of SBDS sensitized cells to ER
(endoplasmic reticulum) stressor
thapsigragin, with an increased
phosphorylation of ER stress marker elF2a
®  Here, ribosome disassembly and
translational insufficiency may contribute to
an increased ER stress in cells. In a separate
study, increased pelF2a was shown to
suppress RAD51 expression, suggesting that
ER stress response suppresses DSBR 1t
thus seems that SBDS deficient cells, such
as in SDS, may have multiple pathways to
compromise its DSB repair capacity and
become radiosensitive (Figure 1).

Concluding remarks and future perspective
In this short opinion, | have delineated that
SDS is caused by mutations in SBDS, which
is known to be involved in ribosome
biogenesis. However, current literature
review suggests that the exact mechanism
by which defects in ribosome assembly led
to patient phenotypes is difficult to
ascertain. Recent studies show that SBDS is

associated with new functions, including
maintenance of DNA repair in cells and
regulation of p53 activation. Consequently,
SDS cells have increased DNA damage and
unresolved phosphorylated H2AX foci,
which are hallmarks of the radiosensitivity
disorders. In order to conclusively ascertain
that SDS exhibit features of radiosensitivity,
SDS patient cells (lymphoblastoid or
hematopoietic progenitor) must be tested
for radiosensitivity in a CSA assay. If SDS
cells were radiosensitive, then the RAD51
expression must be checked to determine if
the patients lacked DSBR capacity due to
lower levels of RAD51 °? Or, establish
expression levels of proteins for the BER
pathway, which also seems to be
implicated. Additionally, SDS cells should
also be tested for activated ER stress
response, since SBDS knockdown results in
ER stress activation. By exploring these non-
ribosomal functions of SBDS we can
improve our understanding of SDS and
potentially open up new lines of treatment
and or management for patients with SDS
or similar disorders.
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Figure 1: Hypothesis to describe the cause of radiosensitivity in SDS cells. First, in SDS cells, lack
of SBDS causes failure to stimulate the GTPase activity of ELF1 and prevents the release of elF6
from the 60S ribosome, resulting in defective ribosome biogenesis and translational
insufficiency. Second, SDS cells exhibit an activated p53 response, which could arise from the
ribosomal stress or from some unknown regulation from the SBDS protein. Activated p53
regulates DSBR proteins, such as RAD51, and may suppress DSBR activity in cells. A suppressed
DSBR protein expression can also cause p53 activation. In SDS cells, the exact source of p53
activation is yet to be determined. Third, lack of SBDS causes ER stress in cells, which can also
suppress DSBR by suppressing RAD51 expression or abundance. ER stress can also arise from
translational insufficiency or from an unknown interaction of SBDS with the ER stress machinery.
A suppressed DSBR capacity can cause radiosensitivity of SDS cells.
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