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The repertoire of nuclease-guided genome 
modifications was recently expanded to include 
homology-independent targeted integration 
(HITI) of exogenous DNA by a report published 
in the December 2016 issue of Nature (Suzuki et 
al. 2016). The key feature distinguishing HITI 
from homology-based DNA Knock-in is its 
applicability in post-mitotic cells of non-
regenerative tissues, such as the brain and 
retina. Suzuki et al. demonstrated the 
therapeutic utility of HITI through genomic 
knock-in of an exon previously deleted by a 
naturally occurring mutation that causes 
blindness in rats. The potential therapeutic 
impacts are farther-reaching than the 
replacement of deleted genomic segments. 
Targeted integration of therapeutic genes in 
post-mitotic cells in vivo may improve 
treatments that rely on continued gene 
augmentation or silencing.  
 
There is tremendous promise for treating 
inherited diseases using clustered regularly 
interspaced short palindromic repeat 
(CRISPR)/CRISPR-associated protein (Cas) 
technology. Genome editing strategies utilize 
cellular enzymes to anneal double strand DNA 
breaks (DSB) created by nucleases (reviewed in 
Yanik et al. 2017). A caveat for translational 
application frequently omitted from discussions 
is that the expression of DSB repair enzymes 
that use donor-template homology is 
dependent on cell cycle progression. 
Recombinases that facilitate homology-directed 
repair (HDR) are predominantly expressed 
during late S/G2 phases, while microhomology-
mediated end joining (MMEJ) factors that allow 
precise integration into target chromosome 
(PITCh) are expressed in M/early S phases 
(Nakade et al. 2014). For diseased organs 
composed of proliferative cells, in vivo HDR or 
MMEJ editing can improve function by 

repopulating tissues with edited cells if genetic 
correction confers a survival advantage 
(reviewed in Cox et al. 2015). However, without 
inducing expression of HDR or MMEJ DSB repair 
enzymes, these editing pathways are 
incompatible for use in in vivo therapy in post-
mitotic tissues.  
 
In contrast to HDR and MMEJ, DSB repair in 
non-dividing cells is largely restricted to classical 
non-homologous end joining (NHEJ), as this 
pathway is exclusively active at all cell cycle 
stages including G0/quiescence (Symington and 
Gautier 2011). CRISPR/Cas-mediated gene 
knockout is one utility ascribed for NHEJ-based 
editing as DSB repair is error prone. The random 
number of nucleotide insertions/deletions 
(indels) during DNA strand annealing frequently 
generate frameshift mutations that specify 
early termination codons, which results in 
functional gene ablation. As such, CRISPR-KO 
represents a therapeutic strategy to treat 
monogenetic dominant disorders if pathogenic 
alleles can be discriminated from wild-type for 
ablation (Bakondi et al. 2016).  
 
A second NHEJ-based therapeutic strategy 
proposed is the removal of intronic splice 
mutations that incorporate non-coding 
sequences into mRNA transcripts to form 
pseudoexons. Targeting Cas cleavage at two 
sites flanking an intronic splice mutation was 
shown to excise the mutated region and correct 
transcript splicing in quiescent retinal 
photoreceptors in vivo (Ruan et al. 2017).  
 
A third NHEJ-based strategy to modify genomes 
in post-mitotic cells is targeted DNA insertion. 
The feasibility of blunt-end DNA ligation at sites 
of DBS was previously shown in cultured human 
cells (Geisinger et al. 2016, Maresca et al. 2013), 
zebrafish embryos (Auer et al. 2014), and the 
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first therapeutic demonstration was provided 
by Suzuki et al. In the highlighted article, the 
investigators corrected the mutation in the 
Royal College of Surgeons (RCS) rat model of 
retinitis pigmentosa (RP). The genetic defect in 
RCS rats originated by spontaneous deletion of 
exon 2 of the mer proto-oncogene tyrosine 
kinase (Mertk) gene that occurred generations 
earlier (D’Cruz et al. 2000). Joining of exons 1 
and 3 shifts the reading frame and truncates 
Mertk into a non-functioning peptide in 
quiescent retinal pigment epithelial (RPE) cells. 
This leads to progressive photoreceptor loss 
and vision decline and models some forms of RP 
in patients. Using adeno-associated virus (AAV) 
for translational delivery to the retina, a HITI 
vector was used to restore exon 2 to Mertk and 
correct the reading frame. This resulted in full-
length Mertk expression and partial vision 
rescue. However, mutations in the orthologous 
MERTK gene in patients are heterogeneous and 
not amenable to correction using the strategy 
designed for RCS rats. While these data suggest 
feasibility of using HITI to correct analogous 
deletion mutations, the study rather 
demonstrates feasibility for phenotypic and 
functional improvement by genomic knock-in, 
which suggests benefit to other gene therapies 
via HITI.  
 
Therapeutic impact may come from utilizing 
safe harbor locus integration for gene 
replacement therapy. Gene delivery by 
lentivirus is experimentally useful as stable 
genome integration allows constitutive vector 
expression, but risk of insertional mutagenesis 
from random integration may prohibit patient 
use. Conversely, the episomal nature of AAV 
vectors makes them safe but limits their 
duration of vector expression (Trapani et al. 

2014). Alternatively, AAV delivery of HITI 
vectors may allow safe integration of 
therapeutic transcripts for constitutive or 
controlled expression. This may be especially 
advantageous for therapies that rely on 
continued expression of effectors that non-
permanently activate or repress endogenous 
gene transcription (e.g. Perez-Pinera et al. 2013 
and Qi et al. 2013) or those that silence mRNA 
translation (e.g. Liu et al. 2016). Proof of 
principle for safe integration was shown by 
knock-in of an AAV-HITI-GFP vector at the 
Rosa26 locus following intramuscular injection 
in adult mice (Suzuki et al. 2016) 
 
Additional applications for HITI may come from 
the observed rates of Knock-in in dividing cells.  
Comparison of in vitro editing efficiencies 
between HITI, HDR, and PITCh vectors in 
proliferative human cells (HEK293) revealed 
that the highest rate of GFP Knock-in was from 
the HITI vector. Knock-in efficiency in organs 
containing dividing cells was also highest using 
the HITI vector. Intravenous delivery of AAV-
packaged vectors showed higher targeted 
knock-in by HITI compared with HDR in heart 
and liver cells (Suzuki et al. 2016). Thus, the use 
of HITI may improve or replace some in vivo 
editing strategies that currently utilize HDR or 
PITCh. Toward this end, Suzuki et al. has 
addressed the size limitation of vectors for 
packaging into AAV particles by demonstrating 
the convergence of HITI effectors delivered in 
separate AAV vectors to induce DNA knock-in in 
vivo. Although demonstrations of direct 
translational editing strategies are needed, HITI 
has expanded the repertoire of possible 
modifications in post-mitotic cells in vivo, and 
thus the number of disorders treatable by 
therapeutic genome editing.  
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