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Abstract 
Natural Killer cells (NK cells) are cells of the innate immune system that are important players in 
mounting an immune response against viral infections and tumors. NK cells have a variety of 
mechanisms in order to detect and attack their target cells. In this review, the roles of NK cells in 
anti-tumor immunity have been discussed. NK cells use a combination of cell surface receptors 
and secreted factors in order to attack tumor cells and prevent tumor growth. In addition, NK 
cells act as an important mediator in the activation of the adaptive immune system, thereby 
resulting in a sustained anti-tumor immune response. Thus a high NK cell number in the tumor is 
indicative of a positive prognosis. Therefore, NK cell proportion is an important readout in order 
to evaluate the efficacy of novel anti-tumor therapies. However, a novel subset of NK cells that 
can suppress the immune response has recently been described. These ‘regulatory’ NK cells 
differ from conventional NK cells in the expression of certain cell surface markers, and secrete 
immune suppressive cytokines. Thus, immune monitoring studies that use cell surface marker 
analysis to determine NK cell numbers as a readout for efficacy of experimental therapies need 
to re-assess their NK cell detection strategy and differentially identify the different NK cell 
subsets. This would help better predict the prognostic effect of certain therapies, as well as pave 
the way for novel therapies targeting tumor-mediated immune suppression.
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Introduction 
Natural Killer cells (NK cells) are cytotoxic 
lymphocytes that play a critical role in the 
innate immune system. NK cells are usually 
characterized by the presence, absence or 
fluorescent intensity of certain cell surface 
markers, as determined by flow cytometry. 
In humans, NK cells are identified as CD3-

CD56+. Further, based on the fluorescent 
intensity of CD56, NK cells can be further 
sub-classified into CD56bright and CD56dim 
cells.  In mice, they are observed to be 
CD3−NK1.1+ or CD3−NKp46+ (1-3). NK cells 
represent 5–15% of circulating lymphocytes 
in humans and can be further categorized 
into subpopulations based on maturation 
status (4). As the first line of defense, NK 
cells have the unique ability to recognize 
stressed cells (typically virus-infected cells 
or tumor cells) and are able to mount a 
rapid immune response in order to 
eliminate their target cells (5). Importantly, 
NK cells act as a bridge between the innate  

and the adaptive immune system, activating 
T cells, dendritic cells (DCs) and 
macrophages in order to elicit a more 
robust and long-term immune response (1). 
For these reasons, NK cells have gained 
special significance in tumor immunology 
and cancer immunotherapy.  
 
NK cells in cancer immunosurveillance 
Natural killer cells attack and kill cells that 
they consider to be dangerous (cancer, 
foreign or virus-infected cells) and therefore 
are major players in cancer 
immunosurveillance (6).   NK cells have 
developed several mechanisms for 
distinguishing healthy cells from cancerous 
cells, which form the basis of NK cell 
activation. These mechanisms consist of a 
complex mix of signals from a variety of 
receptors, both stimulatory and inhibitory. 
The intensity of signaling through either 
type of receptor dictates the NK cell 
response. i.e. increased signaling through
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the inhibitory receptors leads to tolerance 
or inhibition of immune response, while 
increased signaling through the stimulatory 
receptor leads to activation of an immune 
response.  
NK cells express inhibitory receptors for 
major histocompatibility complex (MHC) 
class I complex, viz. the Ly49 receptors in 
mice, killer immunoglobulin-like receptors 
(KIRs) in humans, and the CD94-NKG2A 
heterodimer in both species. Binding of self-
MHC class I is a major mechanism for the 
tolerance of NK cells to self-tissue, and 
allows their ‘education’ in order to 
distinguish between self and non-self 
tissues (7). Cells undergoing malignant 
transformation often down-regulate MHC 
Class I in order to evade the immune 
system, which may alert the NK cells about 
their potential as target cells. However, loss 
of MHC Class I expression alone is not 
sufficient to elicit an NK immune response. 
In addition, the malignant cells also need to 
over express certain NK activation markers 
in order to affect NK cell recognition.  
As mentioned earlier, in tumor cells upon 
cellular transformation, surface MHC-I 
expression is often reduced or lost to evade 
recognition by antitumor T cells. In parallel, 
cellular stress and DNA damage lead to 
upregulated expression of ligands for NK 
cell-activating receptors such as NKG2D, 
NKp46, NKp30, NKp44 and CD226 (8-13), 
(14-16). Binding of NK cell activating 
receptors to their ligands leads to NK cell 
activation and subsequent tumor cell death. 
Several studies in mice have supported the 
notion that NK cells are responsible for the 
eradication of tumor cells. In these studies, 
syngeneic tumor cells were implanted in 
mice that either were genetically deficient 
in NK cell function or depleted of NK cells 
using neutralizing antibodies (17-20). 
Eliminating NK cells in these models often 
led to a more aggressive tumor growth and 
metastasis (21). Thus, NK cells play a crucial 
role in inducing an early immune response 
to tumor cells.   

Mechanisms of tumor cytotoxicity by NK 
cells  
NK cells can exhibit natural cytotoxicity 
against certain tumor cells in the absence of 
pre-immunization or stimulation (22-24). 
CD56dim NK cells, which make up the 
majority of circulating cells, are the most 
potent cytotoxic NK cells against tumor 
cells. As described earlier, NK-cell 
recognition of tumor cells by inhibitory and 
activating receptors is complex, and two 
recognition models—‘missing-self’ and 
‘stress-induced self’—might be used to 
detect tumor cells. NK cells thus activated 
are thus able to directly or indirectly exert 
their antitumor activity to control tumor 
growth and prevent metastasis using direct 
as well as indirect mechanisms. 
Direct NK-mediated anti-tumor immunity 
NK cells directly kill target tumor cells 
through several mechanisms: (a) Release of 
apoptosis-inducing granules: Cytoplasmic 
granules containing perforin and granzymes 
lead to tumor-cell apoptosis in a caspase-
dependent and -independent manner (25, 
26).  Perforin induces perforations in the 
tumor cell membrane, thus allowing entry 
to Granzymes into the tumor cells and 
leading to apoptosis; (b) Death receptor-
mediated apoptosis:  NK cells express 
ligands such as Fas ligand (FasL) or TNF-
related apoptosis-inducing ligand (TRAIL), 
which can induce tumor-cell apoptosis by 
interacting with their respective receptors, 
Fas and TRAIL receptor (TRAILR), on tumor 
cells (27-30).  TNF-α produced by activated 
NK cells can also induce tumor-cell 
apoptosis (31); (c) Secretion of various 
effector molecules: Effector molecules, such 
as cytokines, mediate antitumor functions 
in various ways, including hindering tumor 
angiogenesis and stimulating adaptive 
immunity (32, 33).  Exposure of tumors to 
NK cells is also associated with nitric oxide 
(NO) production, which leads to tumor DNA 
fragmentation and cell lysis (34, 35); (d) 
Antibody-dependent cytotoxicity: NK cells 
can sometimes express CD16, a marker that 
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can interact with antibody receptors on 
tumor cells in order to induce antibody-
dependent cellular cytotoxicity (ADCC) in 
tumor cells (36-41).  
Indirect NK-mediated antitumor immunity 
Apart from directly killing tumor cells, NK 
cells also activate components of the 
adaptive immune system such as DCs, 
macrophages, and T cells by producing 
various cytokines (IFN-γ, TNF-α and IL-10), 
as well as chemokines and growth factors 
(42). Activated NK cells produce IFN-γ, 
which in turn activate naïve CD8+ T cells to 
become cytotoxic T lymphocytes (CTLs). 
IFN-γ also helps to differentiate CD4+ T cells 
toward a T helper1 Th1 phenotype (an 
inflammatory phenotype) in order to 
promote CTL differentiation (43-45).  In 
addition, cancer cells killed by NK cells could 
be phagocytosed by DCs, inducing them to 
mature and present antigen to T cells in 
order to generate antigen-specific CTL 
responses (45-48).  
A 11-year follow-up study in patients 
indicated that low NK cell cytotoxicity was 
associated with increased cancer risk (49). 
In patients with colorectal carcinoma, 
gastric carcinoma and squamous cell lung 
cancer, high levels of tumor-infiltrating NK 
cells are associated with a favorable 
outcome suggesting that NK cell infiltration 
into the tumor tissues represents a positive 
prognostic marker (50-52). Using flow 
cytometry for CD56 detection, Geissler et 
al. showed that a high percentage of CD56+ 
NK cells was associated with increased 
survival in renal cell carcinoma. Therefore it 
is not surprising that in pre-clinical as well 
as clinical studies of novel 
immunotherapies, the levels of NK cells in 
the tumor as well as peripheral blood is 
routinely detected by flow cytometry, and 
presence of high levels CD56+ cells is seen 
as a positive indication towards tumor 
remission and increased disease-free 
survival (53-57).  
 
 

‘Regulatory’ NKs  
Recent studies have started to describe a 
subset of NK cells that play a role in 
immune suppression by regulating the 
activation of other immune cell subsets (58-
61). ‘Regulatory’ NK cells, or better known 
as CD56bright NK cells, are phenotypically 
different from immune activating NKs, and 
display high surface expression of CD56, are 
CD16−/dim, express the inhibitory receptor 
NKG2A, and do not express killer cell 
immunoglobulin-like receptors (KIRs). 
CD56bright NK cells were first considered 
“immunoregulatory” by Cooper et al., due 
to increased production of 
immunosuppressive cytokines and reduced 
cytotoxicity compared to CD56dim NK cells 
(62). 
In several studies, it has now been 
established that CD56bright NK cells regulate 
other immune cells belonging to both the 
innate and adaptive immune system. Deniz 
et al. directly purified IL-10-secreting and 
non-secreting NK cell subsets from 
peripheral blood and were among the first 
to report the ability of IL-10 secreting NK 
cells to suppress T cell function (63). Thus, 
there exists a dynamic relationship between 
NK cells with T cells. Traditionally believed 
to only promote T cell activation, it is now 
understood that NK cells can also inhibit T 
cell–mediated immune responses in a 
variety of contexts, including autoimmunity, 
viral infection and anti-tumor immunity (64-
69). NK cell–mediated regulation of T cells 
has been observed in mouse studies where 
in vivo depletion of NK cells improved 
antiviral T cell responses and resulted in the 
clearance of lymphocytic choriomeningitis 
virus (LCMV) (64, 70). In humans, NK cells 
from patients with chronic hepatitis B virus 
(HBV) infection were able to kill HBV-

specific CD8+ T cells in a TRAIL-receptor-
dependent manner (71, 72). In addition to 
hampering T cell function, some studies 
have reported that suppressive NK cells 
produce IL-10, inhibit B cell function, and 
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weaken immune responses by modulating 
DC function and by killing CD8+ T cells (47, 
73-78). Crome et al. recently described a 
novel immune cell population (described as 
CD56+CD3- cells) that were characterized as 
being 
CD56brightCD16−CD94+NKG2D+KIR+NKp30+NK
p46+ lymphocytes, which could limit T cell 
cytokine production and expansion. While 
the authors refrained from classifying these 
cells as a subset of NK cells, this novel cell 
population expressed several cell surface 
markers that are present in NK cells, 
specifically KIR and NKp46, with NKp46 
regulating interactions with, and 
suppressing T cells (79) (Figure 1). Thus, 
several studies have reliable identified an 
immunosuppressive NK cell subset. 
However, further studies need to be 
performed in order to determine the 
differential expression on cell surface 
markers and secreted cytokines between 
conventional and regulatory NKs.  
 
Potential of NK cells as a biomarker for 
disease prognosis 
In cancer patients, immune monitoring 
studies are routinely carried out in order to 
evaluate or predict response to therapy. For 
immune monitoring, immune cell 
composition in the blood or in the tumor 
(Tumor infiltration lymphocytes (TILs)) are 
detected by a variety of mechanisms 
including flow cytometry and 
immunohistochemistry. TILs specimens that 
possess a high percentage of NK cells (as 
detected by the presence of cell surface 
markers) are usually associated with better 
prognosis and increased survival (33, 51, 
52). However, recent studies have 

substantiated the presence of an 
immunosuppressive NK phenotype. While 
the specific cell surface markers have yet to 
be fully elucidated for this subset, most 
studies have characterized these cells as 
being CD56bright and secreting IL-10. These 
findings have tremendous implications for 
immune monitoring studies that look at TILs 
to evaluate and predict the prognosis of the 
patient. The expression of many NK cell 
markers on regulatory NK cells (albeit at 
different levels) underscores the need for 
careful evaluation of these immune cell 
subsets in TILs before basing prognosis and 
survival predictions off of NK cell numbers. 
Furthermore, functional analysis of NK cells 
from TILs needs to be performed in order to 
assess their net contribution in the tumor 
microenvironment.  
 
Conclusions  
NK cells form the first line of defense 
against tumor immune detection and 
elimination. Furthermore, they play an 
important role in activating the adaptive 
immune system, leading to a more powerful 
and long-lasting immune response against 
tumors. These abilities have collectively 
rendered NK cells as a predictive biomarker 
for better prognosis and improved response 
to cancer therapy. However, with the 
recent identification of an 
immunosuppressive NK cell subtype, which 
possesses a partial overlap in cell surface 
characteristics with conventional NK cells, 
there is now a greater need for routine 
functional characterization of NK cells in 
TILs in order to conclusively assess response 
to therapy and disease prognosis.  
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Figure 1: Role of NK cells in mediating and inhibiting tumor cell death 

Expression of NK activating ligands on tumor cells can lead to NK cell activation and tumor cell 

death. In addition, inflammatory cytokines released during NK cell activation can activate 

cytotoxic T cells, which in turn may also contribute to tumor cell death. Regulatory NK cells, if 

present, can release immunosuppressive cytokines, which can hamper anti-tumor T cell 

response.  
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