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Abstract
Vitamin D deficiency affects more than 1 billion people worldwide. Thirty to fifty percent of the U.S 
population has insufficient levels of vitamin D. Well-known for its major contribution to bone health, 
vitamin D has attracted the attention of science for its restorative role in cardiovascular diseases and 
cardiac injury, especially in chronic kidney disease (CKD) patients. Over the past few decades, research on 
vitamin D and its role in cardiovascular disease has been rapidly expanding, and now the direct association 
of vitamin D signaling and cardiovascular dysfunction and disease has been clearly recognized. Although 
a clear mechanism of how the restoration of vitamin D levels benefits cardiovascular health has yet to be 
identified, a number of clinical studies on vitamin D supplementation have shown its promise as a novel 
cure for cardiovascular diseases. 

Introduction
Since the discovery of its role in curing rickets, 
vitamin D has been extensively studied by many 
researchers from a range of fields. Initially, it 
was mainly known for its crucial role in mineral 
metabolism and bone health. The population 
affected by vitamin D deficiency and insufficiency 
is estimated at more than 1 billion worldwide 
(Holick 2007). Also, between 30% and 50% of the 
U.S. population have inadequate levels of vitamin 
D and 8% are at risk of vitamin D deficiency (Looker 
et al. 2011). Beyond its chief role in bone health, 
vitamin D has drawn much attention for its effects 
in chronic kidney disease (CKD) patients and its 
association with cardiovascular risks. Patients 
with CKD are known to be strongly vitamin D 
deficient due to impaired 1α-hydroxylase enzyme 
activity in the kidney (Quarles 2008). In the same 
context, vitamin D levels are closely related to 
the risk of mortality and survival rates for end-
stage renal disease patients. According to many 
observational cohort studies, 78% of hemodialysis 
patients are vitamin D deficient, and the 2-year 
mortality rate is more than doubled for patients 
who were not treated with injectable vitamin D 
therapy compared to treated patients (Teng et 
al. 2005; Wolf et al. 2007). Also, it is estimated 
that the rate of cardiac failure among patients 
undergoing hemodialysis is almost 40%, and that 
vitamin D deficiency is an independent indicator 

of early death in CKD patients (Foley et al. 1998; 
Gonzalez et al. 2004). Above all, growing evidence 
strongly suggests that vitamin D is associated with 
cardiovascular diseases such as congestive heart 
failure, thereby suggesting a clinically beneficial 
role in the treatment of these diseases. In this 
review, we investigate the relationship between 
vitamin D and cardiovascular risk factors, as well 
as potential preventive and restorative effects of 
vitamin D therapy on the initiation and progression 
of cardiovascular events.  

Metabolism and function of vitamin D
Vitamin D is predominantly synthesized in 
the skin by the photochemical conversion 
of 7-dehydrocholesterol into vitamin D3 
(cholecalciferol). This precursor compound 
exerts no significant biological effects. It 
is later hydroxylated in the liver to form 
25-dihydroxyvitamin D3, which is a long-lived 
circulating storage form of the vitamin (Okano et 
al. 1977). It is further hydroxylated in the kidneys 
to form 1,25-dihydroxyvitamin D3, also known as 
calcitriol, which is the hormonally active form. This 
conversion is biologically critical, because calcitriol 
is the mediator of almost all biological pathways 
targeted by vitamin D. It exerts its effects on 
tissues by binding the nuclear membrane vitamin 
D receptor (VDR). Upon biding, VDR translocates 
to the nucleus and forms a heterodimer with 
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members of retinoid X receptor (RXR) family 
of receptors (Jones et al. 1998). In turn, the 
heterodimer of VDR and RXR binds to hormone 
response elements to regulate expression of 
targeted gene products (Demay 2006). The scope 
of VDR targeted genes is diverse, in terms of the 
types of tissues and the subsequent expected 
outcomes. Liganded VDR induces expression of 
the genes responsible for synthesizing the major 
apical Ca2+ channel proteins in intestinal epithelia 
cells, TRPV5 and TRPV 6, and also the basolateral 
ATPase-driven Ca2+ pump, PMCA-1 (Meyer et 
al. 2006; Pike and Meyer 2012). Binding of 
1,25-dihydroxyvitamin D3 to VDR downregulates 
the expression of parathyroid hormone (PTH) 
genes, which exert effects on the regulation of 
Ca2+ level opposite to 1,25-dihydroxyvitamin D3. 
Furthermore, fibroblast growth factor (FGF23) is 
upregulated by 1,25-dihydroxyvitamin D3, and its 
expressed products have similar effects as PTH (Xu 
et al. 2002). 

Effects of vitamin D on the cardiovascular system
Preclinical studies
Several laboratory studies have found a variety 
of evidence that may explain the link between 
vitamin D and cardiovascular health. It is now 
well-established that VDR and 1α-hydroxylase are 
expressed in the heart and blood vessels (Somjen 
et al. 2005; Chen et al. 2008). O’Connell and 
colleagues have found that vitamin D deficiency 
leads to abnormalities in cell proliferation 
and renin gene expression in cardiomyocytes 
(O’Connell et al. 1994; O’Connell et al. 1997). 
Moreover, recent studies have shown that VDR 
knockout mice are prone to increased cardiac 
renin gene expression and cardiac hypertrophy, 
and decisively, 1α-hydroxylase knockout mice 
develop cardiac hypertrophy (Xiang et al. 2005; 
Zhou et al. 2008). A notable study by Gardner 
and colleagues has strengthened the relationship 
between vitamin D and cardiac hypertrophy. That 
particular study found strong evidence that VDR 
expression is amplified, both in vivo and in vitro, 
during the event of cardiac hypertrophy (Chen et 
al. 2008) 

Beyond recognizing its targeting of the heart, there 
have been many efforts to confirm the efficacy 

of vitamin D treatment to alleviate symptoms of 
cardiovascular dysfunction and disease. Further 
investigation has shown the beneficial effects of 
exogenous administration of calcitriol, the active 
form of vitamin D, and its analog, paricalcitol, 
in in vivo models of cardiac hypertrophy, with 
treated animals showing improved left ventricular 
structure and function and cardiac output (Bodyak 
et al. 2007; Mancuso et al. 2008). Recently, it was 
demonstrated that treatment with paricalcitol 
effectively prevents pre-existing cardiac 
hypertrophy from becoming further aggravated 
and developing into heart failure in rats fed with 
high-salt diet. This particular study presented 
remarkable evidence that PKC-α activation in the 
heart is attenuated by paricalcitol treatment, thus 
possibly pointing to an important mechanism 
that regulates cardiac function (Bae et al. 2011). 
Another study that examined doxercalciferol, or 
1α-hydroxyvitamin D2 (vitamin D2 pro-hormone) 
has substantiated this association. The study 
found that administration of doxercalciferol 
reduced cardiac hypertrophy due to a high-salt 
diet in rats (Choi et al. 2011). VDR activation 
also improves diastolic function, as it alters 
calcium flux and consequently encourages the 
relaxation of cardiomyocytes (Green et al. 2006). 
Moreover, it has been found that VDR has direct 
anti-hypertrophic activity on cardiomyocytes, 
apart from the suppressed renin effect (Chen and 
Gardner 2012). Overall, the direct association of 
vitamin D signaling and cardiovascular dysfunction 
and disease has been clearly recognized, and 
vitamin D therapy thus promises to be novel 
approach that might complement currently 
available therapies for heart failure.

Clinical and epidemiological studies
Numerous clinical and epidemiological studies 
have suggested a strong association between 
vitamin D deficiency and cardiovascular disease 
in the general population. The results found that 
vitamin D levels are highly associated with the 
incidence of arterial disease, myocardial infarction, 
heart failure, stroke, and other cardiovascular 
diseases (Wang et al. 2008; Anderson et al. 2010). 

According to data from the NHANES III (National 
Health and Nutrition Examination Survey), the 
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odds of having increased blood pressure is twice 
as great in adolescents with the lowest serum 
25-hydroxyvitamin D levels (less than 15ng/
mL) than in groups of adolescents with higher 
levels (Thacher and Clarke 2011). Moreover, low 
25-hydroxyvitamin D and 1,25-dihydroxyvitamin 
D3 levels are strongly and independently associated 
with increased risk of cardiovascular mortality, by 
approximately 83%, when compared to higher 
serum vitamin D levels (Dobnig et al. 2008; Grandi 
et al. 2010). It was also observed that low vitamin 
D levels are significantly associated with increased 
risk of sudden cardiac death in diabetic dialysis 
patients and in patients with coronary disease 
risk factors (Pilz et al. 2008; Drechsler et al. 2010). 
Furthermore, insufficient vitamin D levels were 
found to be inversely associated with increased 
arterial stiffness and endothelial dysfunction (Al 
Mheid et al. 2011). 

Chronic kidney disease (CKD) patients, especially 
those with end-stage renal disease, are known 
to be more susceptible to vitamin D insufficiency 
and deficiency. Nearly half of pediatric CKD 
patients are vitamin D deficient and the risk 
of deficiency increases as the stage of CKD 
advances; the prevalence of vitamin D deficiency 
for adult hemodialysis patients was found to 
be almost 66% (Kalkwarf et al. 2012; Bansal 
et al. 2013). Corroborating the link between 
cardiovascular risk and low vitamin D levels is 
that CKD patients with a higher risk of vitamin D 
deficiency frequently suffer from cardiovascular 
dysfunctions and ultimately heart failure. Risks 
of diastolic dysfunction, myocardial calcification 
and increased left ventricular mass are increased 
among CKD patients (Patange et al. 2012). For CKD 
patients, as the disease progresses, renal mass 
and function are severely compromised, resulting 
in decreases in the availability of 1α-hydroxylase 
enzyme. Consequently, the level of calcitriol in 
the serum declines, which leads to compensatory 
overshooting of parathyroid hormones, often 
called secondary hyperparathyroidism (Dusso et 
al. 2011). Moreover, it appears that secondary 
hyperparathyroidism is associated with increased 
risk of cardiovascular events, such as elevated 
arterial pressure and myocardial contractility 
(Zittermann 2006) 

A recent epidemiological study conducted over 
a 29-year period found that stepwise increases 
in the risk of ischemic heart disease, myocardial 
infarction (MI) and early death occur with stepwise 
decreases of plasma 25-hydroxyvitamin D levels. 
Those with the lowest levels of vitamin D had a 
40% increased risk of ischemic heart disease, 
a 64% higher chance of an MI, a 57% increased 
risk of early death, and an 81% higher likelihood 
of fatal ischemic heart disease/MI (Brondum-
Jacobsen et al. 2012). Another interesting study 
to note is the MONICA/KORA Augsburg case-
cohort study, which examined the cases of 
coronary disease in healthy middle-aged men 
and women over a follow-up period of 11 years. 
The results captured a novel gender-specific 
relationship between higher vitamin D serum 
levels and decreased coronary disease cases: that 
vitamin D level was more strongly associated with 
cardiovascular risks in women than men. The 
authors speculated possible explanations for a 
stronger inverse relationship in women. Hormonal 
activity differences, especially in estrogen, might 
contribute to the discrepancy in responses to 
vitamin D (Karakas et al. 2013). 

While the results from interventional studies have 
not been consistent, there have been continuing 
efforts to prove the efficacy of vitamin D 
supplementation as a treatment for cardiovascular 
diseases. A randomized controlled trial in which the 
subjects took daily doses of vitamin D and calcium 
together or a placebo showed no difference in 
coronary or cerebrovascular risk between the two 
groups (Hsia et al. 2007). Similarly, daily vitamin D 
supplementation (400IU or 1000IU) for 1 year did 
not alter levels of cardiovascular risk biomarkers 
such as HDL or LDL cholesterol or inflammatory 
markers. Yet, the level of TNF-α was reduced in 
participants who received 2000 IU of vitamin D 
supplements for 1 year, suggesting to some extent 
the possibility of a therapeutic role of vitamin D 
(Wood et al. 2012). In addition, there have been 
a number of convincing studies to support a 
possible curative effect of vitamin D therapy for a 
wide range of diseases. A moderate to high dose 
of vitamin D supplementation slightly decreases 
cardiovascular risks (Wang et al. 2010). Further, 
upon treatment with vitamin D for 16 weeks, 
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the level of BNP (B-type natriuretic peptide), a 
molecule considered to be a powerful indicator 
for cardiovascular risk, decreases significantly 
(Witham et al. 2010). Recently, paricalcitol has 
been approved by the FDA for the treatment of 
secondary hyperparathyroidism associated with 
severe chronic kidney disease. 

In addition, clinical trials, such as the Paricalcitol 
Injection Benefits in Renal Failure Induced 
Cardiac Morbidity in Subjects with Chronic Kidney 
Disease (PRIMO) trial, have been investigating 
the potential benefits of daily supplementation 
with oral paricalcitol. The previous PRIMO study 
found that paricalcitol therapy over 48 weeks 
did not change the left ventricular mass index or 
show any positive effects on diastolic dysfunction 
in CKD patients when compared to the placebo 
group. Nevertheless, the subsequent PRIMO post 
hoc analysis suggests the contrary. A paricalcitol 
therapy of 48 weeks prevented the rise of plasma 
BNP levels and reduced left ventricular mass 
index, a result that is encouraging for further 
investigations (Tamez et al. 2012; Thadhani et 
al. 2012). All things considered, there has been 
much meaningful evidence collected that implies 
the potential of vitamin D supplementation 
as both a preventive and curative measure for 
cardiovascular diseases. 

Possible cardioprotective mechanisms by vitamin 
D signaling
Years of research with different experimental 
models and cells have provided important insights 
into the possible mechanisms underlying the 
cardiovascular effects and regulation of vitamin 
D. Here, we summarize mechanistic evidence on 
the increased risk of cardiovascular risk related to 
vitamin D deficiency. 

Renin-Angiotensin System 
The renin-angiotensin system (RAS) regulates 
blood pressure, intravascular volume, and 
electrolyte homeostasis via renin released from 
juxtaglomerular cells. It promotes the conversion 
of angiotensinogen to angiotensin I, which is 
then converted to angiotensin II by angiotensin 
converting enzyme (ACE). Vitamin D has a 
function as a negative regulator of the RAS by 

inhibiting the expression of renin (Li et al. 2002; 
Yuan et al. 2007). Thus, vitamin D deficiency, as 
expected, leads to upregulation of the RAS. This 
upregulation inevitably increases the risk of cardiac 
hypertrophy, mainly due to pressure overload, 
but it has been also shown than angiotensin II can 
directly and independently increase blood (Baker 
et al. 1990; Dostal and Baker 1992). It was also 
found that the ACE inhibitor, captopril, reversed 
cardiac hypertrophy and stabilized the levels of 
atrial natriuretic peptide. This result suggests that 
cardiac hypertrophy results from the activation of 
both the systemic and cardiac RAS, and vitamin 
D indeed plays a central role in cardiac function 
(Xiang et al. 2005).

Several experimental studies have definitively 
demonstrated the effectiveness of vitamin D 
in reducing renin expression levels and plasma 
renin activity in mice (Li et al. 2002; Fryer et al. 
2007). The results suggest that liganded VDR 
exerts a direct negative regulation on renin 
gene expression by interacting with CREB (Cyclic 
AMP Response Element Binding Protein) and 
preventing its association with CRE on the renin 
gene promoter (Yuan et al. 2007). Furthermore, 
in rats with 5/6 nephrectromy, the treatment of 
paricalcitol downregulates several components 
of the RAS: angiotensiogen, renin, renin receptor, 
angiotensinogen and angiotensin II type I 
receptor in the kidney remnant, which leads to 
hypertension, cardiac enlargement and elevation 
of natiruretic peptides (Freundlich et al. 2008)

Fibrosis
Fibrosis is a fundamental biological process for the 
replacement or repair of damaged and dead cells 
due to injury, and this critical survival mechanism 
is another important factor that contributes to 
morbidity and mortality from cardiovascular 
diseases (Wynn 2007; Artaza et al. 2011). The 
association between fibrosis and vitamin D has 
been elucidated by mounting evidence. Artaza et al. 
revealed that 1,25-dihydroxyvitamin D3 exposure 
reduced the expression of different collagen 
isoforms, which are powerful markers of fibrosis, 
in multipotent mesenchymal cells (Artaza and 
Norris 2009). Moreover, these findings have been 
corroborated, as the administration of paricalcitol 
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reverses the significant downregulation of VDR in 
the fibrotic kidney, and therefore increases VDR 
expression, which suggests a greater impact of 
vitamin D signaling and vitamin D deficiency in 
a dysfunctioning kidney (Tan et al. 2006). Also, 
administration of paricalcitol reduces cardiac 
fibrogenesis and expression of pro-fibrotic genes 
in the heart. Likewise, there is a small reduction 
of left ventricular hypertrophy accompanied by a 
substantial reduction in cardiac fibrosis, thereby 
protecting from diastolic dysfunction to some 
extent (Meems et al. 2012). Yet, there has been 
some contradicting evidence. In a rat model of 5/6 
nephrectomy, the administration of paricalcitol did 
not reduce, but rather exacerbated, myocardial 
fibrosis and pro-fibrotic gene expression (Rahman 
et al. 2007; Repo et al. 2007). 

Inflammation
Recently, vitamin D has attracted much attention, 
as it has been suggested to play a critical 
regulatory role in inflammation, which is one of 
the factors leading to cardiovascular risks. A low 
25-hydroxyvitamin D level increases the levels 
of C-reactive protein and IL-10, thus leading to 
a higher risk of inflammation (Zittermann 2006). 
This association has been further supported by the 
finding that vitamin D supplementation promotes 
the serum concentration of anti-inflammatory 
cytokine IL-10, and suppresses the increase in 
serum levels of the pro-inflammatory cytokine 
TNF-α in congestive heart failure patients. These 
results suggest downregulatory effects of vitamin 
D on inflammatory biomarkers (Schleithoff et al. 
2006). In addition, it was found that vitamin D 
inhibits pro-inflammatory cytokines including 
IL-6 and IL-12 (Mathieu and Adorini 2002). 
Interestingly enough, the negative regulatory 
mechanism of vitamin D on the production of IL-
12 has been shown to involve downregulation of 
NF-ĸB gene expression (D’Ambrosio et al. 1999). 
It is well-known that the post-MI (myocardial 
infarction) healing process is controlled by 
inflammatory cytokines such as TNF-a, IL-6, IL-8 
and IL-10. Through a certain phase of post-MI, 
the cytokines act as cardioprotective molecules, 
as they appear to reduce apoptosis (Maggio et 
al. 2006). However, when increased levels of 
cytokines are sustained, they eventually worsen 

the situation for myocardial remodeling, as 
cytokines self-amplify through positive feedback 
targeting NF-ĸB (Puhakka et al. 2003; Arnson et al. 
2013). Another important finding demonstrated 
that high TNF-α levels hinder the conversion of 
25-hydroxyvitamin D to 1,25-dihydroxyvitamin 
D3 by endothelial cells, causing a vicious loop of 
promoting inflammation and suppressing vitamin 
D activation (Witham et al. 2010). Therefore, the 
pro-inflammatory state is thought to be closely 
involved in the pathophysiology of cardiac and 
endothelial dysfunction. 

Future aspects of Vitamin D treatment on the 
cardiovascular disease
In animal models, paricalcitol and doxercalciferol 
have a demonstrated beneficial effect on 
preventing cardiac dysfunction (Choi et al. 
2011). However, calcitriol has caused non-
desired hypercalcemic actions and has a narrow 
therapeutic window. Therefore, treatment may 
be better accomplished by analogs of calcitriol 
with a wider safety margin (Wu-Wong 2009). 
Currently, researchers are focused on developing 
other selective VDR agonist drug candidates with 
high selectivity and efficacy to treat the heart 
failure phenotype and high renin-associated 
dysfunctions (Simpson 2011).

Nevertheless, despite the significant potential 
for vitamin D therapy in cardiac hypertrophy and 
heart failure, its clinical utility has thus far been 
limited by the fact that vitamin D also elevates 
serum Ca2+. In trying to circumvent some of 
the pharmacodynamic limitations inherent to 
this class of compounds, several groups have 
attempted to synthesize structural analogs 
that retain the selectivity profile of the parent 
compound, 1,25-dihydroxyvitamin D3, but are 
devoid of the classic calcification issues (Bouillon, 
et al. 1995; Boehm et al. 1999; Swann et al. 2002; 
Ma et al. 2006; Norman 2006). To date, more than 
3000 calcitriol analogues have been synthesized, 
but few are of clinical interest.

Furthermore, there has been building evidence 
pointing to omega-3 fatty acids as a potential 
means of treatment for cardiovascular events. 
In the GISSI-P study launched in 2004, daily 
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supplementation with omega-3 fatty acids, in 
addition to regular medical treatment, had the 
effect of reducing cardiac and all-cause mortality 
for post-myocardial infarction patients (Guttler 
et al. 2012) Likewise, there has been an ongoing 
trial, called VITAL, which involves vitamin D and 
omega-3 fatty acids and their efficacy in the 
primary prevention of cardiovascular diseases and 
cancer. Although no affirming clinical evidence 
is yet available, the role omega-3 fatty acids in 
cardiovascular diseases is another area of interest 
from which the vitamin D research field could find 
inspiration for future research. 

Conclusion
Extensive evidence collected over the past 
decade clearly suggests a strong association 
between low serum vitamin D levels and the risk 
of cardiovascular diseases and dysfunctions. Also, 
several potential mechanisms whereby vitamin D 
may affect the pathophysiology of cardiovascular 
disease events have been recognized, through 
many laboratory studies in animal models and at a 
molecular level. However, a clear mechanism as to 
how vitamin D restoration benefits cardiac health 
and restores heart function has yet to be clearly 
identified. Currently, insufficient interventional 
data from randomized controlled trials (RCT) is 
available make any conclusions on the effects 
of vitamin D intake on cardiovascular disease, 
especially in humans. To further solidify the 
relationship between vitamin D and cardiovascular 
risk factors, more RCTs with larger groups are still 
needed to determine whether vitamin D therapy 
will alleviate clinically meaningful cardiovascular 
events such as myocardial infarction, heart failure 
and hypertrophy.  
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