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In the past two decades, Snail family genes have been extensively studied in mouse development and 
cellular function, including the regulation of epithelial-mesenchymal transitions (EMTs) during both 
embryonic development and metastasis of epithelial tumors, cell survival and cell death, the 
determination of cell fate, and the establishment of left-right asymmetry. However, their role in bone 
development is not as widely reported. The purpose of this review is to briefly overview embryonic long 
bone development and summarize recent studies that provide evidence for Snail signaling in long bone 
development

Embryonic bone development mice 
 
Bone formation, also known as osteogenesis or 
ossification, is a process by which bone tissue 
replaces embryonic connective tissue to form 
the skeleton from childhood to early adulthood. 
Ossification lengthens and thickens bone, and 
also provides mechanical strength. In addition, 
the process of ossification is used throughout 
life to remodel bones. During embryogenesis, 
the cells that form the vertebrate skeleton are 
derived from three distinct embryonic lineages. 
The cranial neural crest cells form much of the 
craniofacial skeleton, the paraxial mesoderm 
(somites) generates axial skeleton, and the 
lateral plate mesoderm becomes limb skeleton. 
At the beginning of bone development, the 
distinct embryonic lineages migrate to the 
specific sites in the embryo where skeletal 
elements will develop. These cells then form 
highly condensed aggregates of mesenchymal 
cells, and differentiate into osteoblasts (bone-
forming cells) or chondrocytes (cartilage-
forming cells). There are two distinct ways that 
bones can develop in mammals: 
intramembranous ossification and 
endochondral ossification. During 
intramembranous ossification, mesenchymal 
precursor cells proliferate and subsequently 
differentiate directly into osteoblasts which 
mineralize into bone. In contrast, endochondral 
ossification is a multistep process in which 
mesenchymal cells condense to form a cartilage 
template that subsequently becomes    replaced  

 
 
by mineralized bone. Both of these types of 
ossification are critical for embryonic 
development and adult life. Flat bones, like 
cranial skull bones and clavicles, are produced 
by intramembranous ossification; long, short, 
and irregular bones, like limb bones, are 
generated by endochondral ossification. In the 
following section, I will mainly focus on 
describing endochondral ossification, as this 
review concerns long bone development, which 
occurs by endochondral ossification. 
 
Endochondral ossification, the replacement of a 
cartilage template by bone and bone marrow, 
occurs in more than 95% of the skeleton in 
most vertebrates (Epstein et al., 2004). This 
process has several steps. For the long bones of 
the limbs, the process begins when lateral plate 
mesoderm-derived mesenchymal progenitor 
cells migrate into the limb bud. These cells form 
mesenchymal condensations that produce a 
cartilage template, the shape of the future bone. 
Normally, mesenchymal condensation in mouse 
limb buds starts at around embryonic day 
(E)11.5 (Bi et al., 2001), and is a prerequisite of 
chondrogenesis during embryonic development 
(Thorogood and Hinchliffe, 1975). 
 
After mesenchymal condensation is complete, 
cells in the condensation keep proliferating. 
Cells in the center of the condensation 
differentiate into flattened, lens-shaped
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chondrocytes. The chondrocytes then align into 
vertical columns and produce an extracellular 
matrix (ECM) largely composed of type II 
collagen and specific proteoglycans such as 
aggrecan. In the meantime, the peripheral 
mesenchymal cells differentiate into the 
perichondrial cells to form perichondrium that 
separates developing skeletal elements from 
the surrounding mesenchyme. At this point, the 
cartilage primordia form.  
 
Shortly after the formation of the cartilage 
primordia (E13.5), rapidly proliferating 
chondrocytes near the center of each growing 
element then stop dividing to enter into a 
transition stage called prehypertrophic 
chondrocytes, which quickly undergo further 
maturation to become enlarged hypertrophic 
chondrocytes. As hypertrophy proceeds, the 
hypertrophic chondrocytes continue to enlarge 
and synthesize type X collagen as well as several 
growth factors to generate a mineralized matrix. 
Collagen X has been extensively used as a 
marker for hypertrophic chondrocytes, as it is a 
unique component of this population (Iyama et 
al., 1991). The growth factors produced by 
hypertrophic chondrocytes send critical signals 
to the surrounding perichondrial cells to induce 
these cells to become osteoblasts. In parallel, 
hypertrophic chondrocytes secrete angiogenic 
factors, such as vascular endothelial growth 
factor A (VEGF-A), to initiate sprouting of blood 
vessels from the perichondrium, which allow 
the osteoblasts to travel into the cartilage mold 
secreting bone matrix to form true bone (E15.5). 
Hypertrophic chondrocytes eventually undergo 
apoptosis. Subsequently, growth plates, the 
zones of cartilage at each end of the long bones, 
sustain themselves and elongate developing 
bones. In brief, growth plate development is a 
step by step process in which chondrocytes 
keep proliferating and give rise, layer by layer, 
to maturing chondrocytes. Therefore, 
chondrocytes play a central role in this process. 
During development, the growth plate stratifies 
into zones of resting, proliferating, 
prehypertrophic, and hypertrophic 

chondrocytes, forming a highly organized and 
interactive structure. 
 
Various genetic regulators and signaling 
pathways contributing to the regulation of the 
proliferation, differentiation, and maturation of 
growth plate chondrocytes at all stages of 
endochondral ossification have been 
extensively described in the last two decades, 
including SOX (Wagner et al., 1994; Lefebvre 
and de Crombrugghe, 1998; Lefebvre et al., 
1998; Bi et al., 1999; Smits et al., 2001; Akiyama 
et al., 2002; Kist et al., 2002; Han and Lefebvre, 
2008; Hattori et al., 2010) and RUNX (Stricker et 
al., 2002; Yoshida and Komori, 2005; Sato et al., 
2008)  transcription factors, bone 
morphogenetic proteins (BMPs) (Yi et al., 2000; 
Zhang et al., 2005; Yoon et al., 2006; Retting et 
al., 2009; Karamboulas et al., 2010), fibroblast 
growth factors (FGFs) [reviewed in (Degnin et 
al., 2010)], the IHH-PTHrP feedback loop 
(Kobayashi et al., 2002; Kronenberg, 2006; van 
Donkelaar and Huiskes, 2007), WNT signaling 
(Rudnicki and Brown, 1997; Stott et al., 1999; 
Tufan and Tuan, 2001), NOTCH signaling 
(Karlsson and Lindahl, 2009; Mead and Yutzey, 
2009), and so on. Some of these factors and 
pathways accelerate chondrocyte development, 
and some of them inhibit this process [reviewed 
in (Long and Ornitz, 2013)]. All these molecules 
and signaling pathways highly interact with 
each other, forming a complex network to 
maintain bone growth and homeostasis (Fig. 1).  
 
Overview of the Snail family genes 
 
The Snail gene was first described in Drosophila 
melanogaster (Grau et al., 1984), where it is 
essential for formation of the mesoderm 
(Alberga et al., 1991). The Snail gene 
superfamily contains the Snail and Scratch 
families (Barrallo-Gimeno and Nieto, 2009). In 
the past 20 years, three members of the Snail 
gene family have been described in vertebrates: 
Snai1 (also known as Snail), Snai2 (Slug) and 
Snai3 (Smuc). Snail family proteins are 
composed of a highly conserved C-terminus, 
containing four or five Cys2-His2 (C2H2)-type 
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zinc finger regions, and a more divergent N-
terminus that contains the evolutionarily-
conserved SNAG domain. The zinc finger 
regions are sequence-specific DNA-binding 
domains which are capable of recognizing E2-
box sequences (CAGGTG and CACCTG). Both 
SNAI1 and SNAI2 proteins can recruit and bind 
other proteins, such as histone deacetylase-1 
(HDAC-1), to the E2 boxes of target genes to 
form a transcriptional repression complex 
(Tripathi et al., 2005; Peinado et al., 2007) to 
suppress the transcription of target genes. 
Therefore, Snail transcriptional factors are 
currently considered as transcriptional 
repressors (Peinado et al., 2007). 
 
Snai1 and Snai2 have been widely studied due 
to their ability to trigger the epithelial to 
mesenchymal transition (EMT) during multiple 
processes of developmental and cancer biology. 
In addition, the SNAI1 and SNAI2 proteins also 
have demonstrated roles in other important 
developmental and cellular processes, such as 
the protection of cells from programmed cell 
death, the establishment of left-right 
asymmetry and the regulation of cell motility 
(Barrallo-Gimeno and Nieto, 2005; Haraguchi, 
2009; Wu and Zhou, 2010). Snai3 was first 
identified in adult skeletal muscle (Kataoka et 
al., 2000), and was subsequently found to be 
highly expressed in thymus, and at much lower 
levels in heart, lung and spleen (Zhuge et al., 
2005). The role of Snai3 during development in 
mouse has been described in detail in a recent 
paper (Bradley et al., 2013). All evidence 
indicates that Snail family factors are 
transcriptional repressors that can suppress the 
activation of downstream target genes (Nieto, 
2002; De Craene et al., 2005). To date, 
numerous direct target genes of the SNAI1 and 
SNAI2 proteins have been characterized, 
including gene encoding the endothelial 
adherens junction component, VE-cadherin 
(Peinado et al., 2004; Peinado et al., 2007), and 
genes encoding tight junction components such 
as occludin and Claudins (Ikenouchi et al., 2003), 
the vitamin D receptor (Palmer et al., 2004), 
Puma (a mediator of p53-induced apoptosis) 

(Wu et al., 2005), cyclin D1 (Vega et al., 2004), 
Runx2, and type II collagen (Seki et al., 2003). 
Most interestingly, the Snai1 gene itself is a 
target for repression by the SNAI1 protein 
(Peiro et al., 2006).  
 
Snail family genes and long bone development 
 
In addition to their role in epithelial cells, the 
Snai1 and Snai2 genes also function in some 
non-epithelial cells, such as chondrocytes and 
osteoblasts. Snai3 is not expressed during 
embryonic bone development (my unpublished 
data). 
 

 
 
Figure 1. Schematic diagram of the molecular 
control of growth plate chondrocytes. Black 
arrows indicate stimulatory pathways, and red 
crossed lines indicate inhibitory pathways.  Not 
all the molecules involved in this process are 
included. 

Snai1 is first expressed in condensing pre-
cartilage cells at the early stage of limb 
development (Nieto et al., 1992; Smith et al., 
1992). During embryonic bone development, 
the Snai1 and Snai2 genes are highly expressed 
in chondrocytes and osteoblasts (Nieto et al., 
1992; Oram et al., 2003), and have been 
implicated in cartilage (chondrocytes) and bone 
(osteoblasts) development. SNAI1 works as a 
necessary regulator by activating the early 
differentiation marker, Collagen I and 
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Osteopontin, and repressing Runx2 expression 
during osteogenic differentiation from 
mesenchymal stem cells (Park et al., 2010). 
Sustained Snai1 activation in adult mouse 
osteoblasts facilitates the formation of 
unmineralized ECM but inhibits terminal 
differentiation of osteoblast (bone forming cells) 
and osteoclast (bone resorbing cells), leading to 
a defective mineral deposition (de Frutos et al., 
2009). SNAI2 is expressed in normal human 
osteoblasts. However, in vitro knockdown of 
SNAI2 in human osteoblasts revealed that 
SNAI2 was positively correlated with osteoblast 
markers, including Runx2 (Lambertini et al., 
2009). These data suggest that SNAI1 and SNAI2 
may act as positive or negative transcriptional 
regulators of Runx2 during different stages of 
osteogenesis. 
 
Nieto’s group showed that, in a gain of function 
mouse model, overexpression of Snai1 in the 
developing limb bone inhibited chondrocyte 
proliferation and differentiation, and led to 
defects in both chondrocytes and osteoblasts, 
and consequently caused achondroplasias, the 
most common genetic forms of dwarfism,  in 
mice (de Frutos et al., 2007). In their mouse 
model, Snai1 was demonstrated as a critical 
downstream gene of fibroblast growth factor 
receptor 3 (FGFR3) and to be required for the 
transduction of FGFR3 signaling during bone 
development. Loss-of-function studies will help 
to better understand whether Snail family 
genes have an essential, physiological role 
during normal bone development. 
Recently, our lab generated a loss-of-function 
mouse model in which we conditionally deleted 
the Snai1 gene in limb bud mesenchymal 
progenitor cells by Prrx1-Cre on a Snai2 null 
background. Using this mouse model, we 
demonstrated that Snai1 and Snai2 genes are 
required for chondrogenesis in mouse limbs by 
controlling chondrocyte proliferation and 
differentiation (Chen and Gridley, 2013a). 
Simultaneous deletion of the Snai1 and Snai2 
genes led to shortened long bones, defects in 
chondrocyte morphology and organization, 
inhibited trabecular bone formation and 

delayed ossification. Most interestingly, we 
observed that when one of these two genes 
was mutated, the expression domain of the 
remaining gene (both mRNA and protein) 
expanded into the expression domain of the 
deleted gene, which means these two genes 
compensate for the lack of function in the other 
quantitatively, spatially, and temporally during 
this process. In addition to our in vivo data, our 
in vitro results support the model that 
expression of the Snai1 and Snai2 genes is 
negatively regulated by their protein products 
occupying each other’s promoter during 
chondrogenesis, which helps provide an 
explanation for the genetic redundancy 
observed in the mouse loss of function models 
(Chen and Gridley, 2013b). The observations 
that either activation or deletion of Snail genes 
caused bone defects would suggest that normal 
bone development requires carefully-regulated 
expression of the Snai1 and Snai2 genes. 
 
Prospective  

A physiological role of the Snai1 and Snai2 
genes during normal chondrogenesis has been 
explored using the Prrx1-Cre line in a loss-of-
function mouse model (Chen and Gridley, 
2013a). Using the Prrx1-Cre driver line results in 
the conditional knockout of the Snai1 gene on a 
Snai2 null background early in skeletal system 
development, in both cartilage and mineralized 
bone. It will be very interesting to see whether 
Snail genes behave in the same way during 
osteogenesis. In addition, more molecular 
targets of Snail family genes during bone 
development needed to be determined. 

It has been reported that SNAI1 expression was 
highly increased in a human stillborn bearing 
the most severe and lethal achondroplastic 
condition (thanatophoric dysplasia type II; a 
K650E FGFR3 mutant) (de Frutos et al., 2007). In 
addition, the attenuation of one of Snai1’s 
upstream genes, FGFR3, has been long thought 
to be an effective therapy for achondroplasias. 
Because Snai1 functions downstream of FGFR3 
(de Frutos et al., 2007), modulation of Snail 



18                                                                                  Journal of Postdoctoral Research September 2013: 14-21 

 
 

genes activity could be a possible therapeutic 
avenue for treatment of achondroplasias. 
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