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Abstract 

Modern medicine has developed many ways of treating cancer but, unfortunately, we are still a long 

ways from being able to successfully treat every patient.  Some cancer patients may feel that their 

oncologists are not aware of other options while others may prefer a treatment that has not been 

approved for use in patients.  The prevalence of complementary and alternative medicine in cancer 

treatment is surprisingly large and information regarding these treatments, whether true or false, is 

spread easily over the internet.  In this review I hope to touch on a few of the most “popular” cancer 

treatments that can be found on the internet.  By no means does this review cover even a small portion 

of those that can be found, and it is not meant to be a comprehensive review on any one of them.  It 

should be viewed as a scientific snapshot of the current laboratory and clinical data that are available for 

these methods and to serve as a contrast to the hype, insufficient data, and incorrect information that 

can be found on any number of websites. 
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Introduction 

 

Through a meta-analysis of available literature, 

a recent review determined that up to 93.1% of 

cancer patients utilize a form of treatment that 

would be considered complementary or 

alternative [1].  Many times physicians and 

scientists view these treatments in a negative 

light, but with an extremely high usage rate it is 

clearly important that they be understood.  

These methods may be used for any number of 

reasons.  Some may seem logical while others 

may not, but it is important for those studying 

them to put themselves in the patient’s shoes.  

There is a population that believes the medical 

community does not want their cancer to be 

cured and is seeking the treatment that will 

produce the most profits.  While discussing the 

validity of this sentiment is well beyond the 

scope of this review, one must remember that 

patients have a right to these thoughts and they 

are best approached through science and 

bettering our current treatment options.  Other 

potential, and seemingly valid, reasons for 

attempting these methods include financial 

concerns (i.e. not being able to afford the 

standard of care) as well as falling to them as a 

last resort upon failure of the standard of care.  

Once treatment shifts from curative to 

palliative, patients may feel as if they have 

nothing to lose, and that decision is theirs 

solely.  Not only do alternative and 

complimentary treatments offer them options 

that oncologists would not endorse, but it 

allows them to sidestep the Food and Drug 

Administration approvals and regulations that 

all treatments must abide by in the clinic, 

allowing patients to utilize high-risk treatments.  

Ultimately, these treatments provide these 

patients with hope, making it the duty of us in 

the scientific community to understand them, 

allowing us to harness the benefits they 

provide, while allowing us to better counsel 

patients in the use of these treatments, either 
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singularly or in conjunction with the standard of 

care. 

 

The wealth of medical information and, 

unfortunately, misinformation available on the 

internet has vastly increased the amount of 

information a patient can acquire regarding the 

treatment of his or her disease.  In this review, I 

hope to examine the science information that is 

available for a few of the most popular forms of 

complementary and alternative forms of cancer 

treatment.  These were determined by internet 

searches and pared down to a few that I felt 

were not inherently false at their very premises 

based on my own personal knowledge, and 

those that did indeed have data available, many 

of which unfortunately do not.  With this 

publication, I hope to benefit both the patients 

in bringing them data and information they may 

not have previously had, as well as the medical 

and scientific community in the form of bringing 

to light that these treatment methods are being 

used by cancer patients. 

 

Dichloroacetate: The little (but unpatentable) 

molecule that could. 

 

Dichloroacetate (DCA) is a small molecule that 

is being investigated for use in cancer [2-5] as 

well as mitochondrial disorders [6-8] and 

pulmonary arterial hypertension [9].  It is an 

inhibitor of pyruvate dehydrogenase kinase 

[10], which is itself a physiological inhibitor of 

pyruvate dehydrogenase, a mitochondrial 

enzyme that is important in carbohydrate 

metabolism [11].  DCA is then effectively an 

activator of pyruvate dehydrogenase and 

mitochondrial metabolism. 

 

 

 

This is important in the treatment of cancer two 

different ways.  First, it is able to reverse the 

Warburg effect.  The Warburg effect is a well 

documented shift of cancer cell metabolism 

from mitochondrial oxidative phosphorylation 

to aerobic glycolysis in the cytoplasm (reviewed 

in [12] and [13]).  While a definitive explanation 

as to why cancer cells would shift their 

metabolism to the less efficient glycolytic 

pathway has yet to be found, possible reasons 

include increased invasive capacity due to the 

acidified environment [14], the fact that 

glycolysis produces a number of building blocks 

that are essential for rapid cell proliferation 

(reviewed in [15]), or that it is simply a 

consequence of mitochondrial shutdown as an 

anti-apoptotic mechanism (discussed below).  

Second, the mitochondria are critical in the 

process of apoptosis, and their shutdown leads 

to apoptotic resistance (reviewed in [16]).  DCA 

therefore reverts cellular metabolism to a 

normal state and reactivates the apoptotic 

pathway, either leading directly to death due to 

intrinsic cellular death signals or sensitization to 

other therapeutics. 

 

DCA is different than most other forms of CAM 

in that it is not viewed as a "natural cure," nor is 

it simply a lifestyle modification.  It is generally 

thought of as a drug and is being investigated 

scientifically as such, but is also being used by 

cancer patients to self-medicate.  Grass-roots 

supporters aim to get the word out about DCA, 

stating that it is a drug that "big pharma doesn't 

want you to know about."  DCA is a generic 

Figure 1.  
Dichloroacetate  The 
highly bioavailable 
small molecule DCA is 
usually administered 
as the sodium salt. 
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drug, therefore unpatentable.  This creates a 

perfect storm of conspiracy that was initially 

buoyed by unscientific and sensationalistic 

interpretation of the small amount of scientific 

data available at the time.  Of course, even if 

the pharmaceutical industry does not want to 

investigate DCA for this reason (the validity of 

this statement is both beyond the scope of and 

inconsequential to this review), academic 

researchers may still approach it and it is 

possible that this online controversy has soured 

the interest of those in the academe in studying 

it. 

 

While the early results were overblown, there is 

in fact plenty of promising data regarding DCA, 

although there have been limited clinical trials 

for its use against cancer.  DCA induces 

apoptosis in breast [17], small-cell lung [17], 

glioblastoma [17], endometrial [18], and 

prostate [19] cancer cell lines.  Animal models 

have shown that DCA may work as a single 

agent [3] as well as synergistically with current 

chemotherapy treatments [3,20].  Interestingly, 

sensitization to radiotherapy is seen in vitro 

while a protective effects is observed in a 

xenograft model due to induction of tumor 

hypoxiabecause of the switch to oxidative 

phosphorylation upon treatment [21].  

Similarly, DCA induced apoptosis in normoxic 

colorectal cancer but had the opposite effect, 

increasing tumor growth, in hypoxic conditions 

[22], demonstrating that there is much to be 

learned about the use of DCA. 

 

Clinically, the small size of DCA lends it excellent 

bioavailability and the ability to cross the blood-

brain barrier.  It is in the brain, largely due to 

the dearth of acceptable treatments for brain 

cancers, that DCA has found its most use.  The 

first clinical trial saw DCA used in five patients 

after debulking surgery for glioblastoma 

multiforme [5].  One patient had a very large 

tumor and died during the clinical trial.  The 

others either showed no growth or survived 

past the end of the study after having additional 

debulking surgeries. 

 

An open-label phase II clinical of DCA in non-

small cell lung cancer (NSCLC) and breast cancer 

recently concluded [23].  The study was open to 

up to 29 advanced NSCLC and 18 metastatic 

breast cancer patients but was only able to 

recruit 6 NSCLC and 1 breast cancer patient.  

The breast cancer patient showed no 

progression for two months before developing 

brain metastases.  Two patients died soon after 

beginning treatment, with connections to DCA 

unknown.  To additional patients experienced 

progression between the first treatment and 

the first follow-up examination.  The final two 

NSCLC enrollees withdrew their consent due to 

worsening health conditions.  The study was 

closed due to a lack of clinical benefit and the 

authors suggest that DCA is likely not a suitable 

monotherapy for NSCLC. 

 

The results of these limited clinical trials show 

that while DCA has promise (as in the treatment 

of brain cancer), it doesn't appear to be the 

magic bullet it is sometimes perceived as.  It is 

disappointing that the NSCLC/breast cancer trial 

received such a small enrollment prior to 

closing.  With the noted difficulty in funding 

clinical trials of DCA, those receive funding are 

of utmost importance.  The breast cancer arm 

only has one data point and the NSCLC arm only 

had two patients in which the treatment could 

be effectively analyzed.  DCA may indeed be a 

useful therapeutic for some cancers, but we are 

in great need of determining what the 

biomarkers are that influence treatment 

outcome. 
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Vitamin D: Got Milk? 

 

A lack of vitamin D is touted as a reason for 

cancer development by a number of websites.  

Vitamin D supplements as well as increased UV 

exposure through natural sunlight or UV lamps 

are claimed as effective measure for both 

preventing and treating cancer.  The known 

science creates a case that is best classified as 

“inconclusive,” with positive results seen in 

experimental settings but rather lackluster data 

coming from humans. 

 

Vitamin D is synthesized in the skin as part of a 

photochemical reaction upon exposure to UVB 

light.  This form of vitamin D, vitamin D3, is then 

converted into other active forms of vitamin D 

once it reaches the liver.  While it is well known 

that these molecules play a major role in 

calcium and phosphorus absorption [24], their 

role in cancer formation is not as recognized.  

The data backing up this role are mixed, with 

laboratory results showing a strong influence 

while clinical results do not. 

 

The first connection between vitamin D and 

cancer was drawn in 1980, when Garland and 

Garland noticed that colon cancer rates were 

higher in states that had lower sun exposure 

[25].  Recent meta-analyses have shown that 

colon cancer risk is inversely related to vitamin 

D intake [26,27].  In contrast, meta-analyses 

examining vitamin D intake have shown mixed 

results in breast [28-30] and prostate cancer 

[31,32]. 

 

Animal studies have shown much clearer 

results.  When mice are fed a diet low in vitamin 

D and calcium they develop colon cancer 

spontaneously [33], and APC mutant mice 

develop colon cancer faster when fed a vitamin 

D and calcium restricted diet [34].  Vitamin D 

receptor null mice develop breast cancer 

quicker than control mice when treated with 

dimethylbenzanthracene [35] and non-vitamin 

D agonists of the vitamin D receptor can block 

the growth of breast tumor xenografts [36].  

Similar results have been seen in prostate 

[37,38] and skin cancers [39,40]. 

 

While it is clear that vitamin D has an effect on 

cancer, the mechanistic connection between 

them is not as obvious.  Through its receptor, 

vitamin D controls the expression of a vast 

number of genes and some of these genes 

impact cancer growth in multiple ways.  Most 

directly, vitamin D shows antiproliferative 

actions.  This appears to be downregulation of 

Cyclins in addition to upegulation of 

endogenous Cdk inhibitors such as p27 and p21 

[41,42].  Additionally, vitamin D downregulates 

Myc, Fos, and Jun [43] while inducing 

expression of TGFβ and its receptors [44]. 

 

Vitamin D also increases the rate of apoptosis 

through increasing pro-apoptotic factors such 

as Bax while decreasing anti-apoptotic factor 

Bcl and Bcl-XL [45].  Interestingly, the 

intracellular calcium influx caused by vitamin D 

preferentially activates caspases and calpains in 

cancer cells since normal cells are able to buffer 

the increased calcium through CaBP28k, a 

protein that is only expressed in low levels in 

cancer [46].  Other relevant mechanisms that 

are influenced by vitamin D include an 

activation of DNA damage repair [47-49], 

inhibition of prostaglandin synthesis [50], 

reduced angiogenesis through blockage of VEGF 

production [51], and inhibition of metastasis 

through activation of inhibitors of matrix 

metalloproteinases and cathepsins [52].  
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Figure 2. Anticancer effects of vitamin D.  

Ultraviolet light from the sun results in Vitamin 

D production in the skin.  Through the Vitamin 

D receptor, this results in decreased cell 

proliferation, upregulation pro-apoptotic 

factors, and increased DNA damage repair 

capacity. 

 

Dietary Changes: Watch what you eat. 

 

In a recent review, Huebner et al. noted that 

changes in diet are the most common form of 

CAM used to treat cancer and it was due to the 

fact that patients often believed their cancer 

was caused by pollutants or a weakened 

immune system [53].  They therefore conclude 

that changing what they eat is the best way to 

either stop introducing toxins into their bodies 

or to take in more of the beneficial compounds 

(i.e. vitamins).  As the benefits of these changes 

as well as their effects on the success of 

traditional treatments are very poorly 

understood, here we take a look at two of the 

most common dietary changes: fasting and the 

ketogenic diet.  Others that have a significant 

following include the Gershon diet (large 

amounts of fruit and vegetable juices, high 

potassium, low sodium, and caffeine enemas) 

[54], the Gonzales regimen (ingestion of 

pancreatic proteolytic enzyme) [55,56], and 

consumptions of large amounts of raw food, 

among others. 

 

 

 

 

Fasting: Feed a cold starve a tumor? 

 

The American Cancer Society suggests cancer 

patients undergoing treatment should increase 

their calorie intake [57].  However, the 

undocumented health benefits of fasting, which 

may be done for a variety of reasons, have been 

touted for thousands of years.  A large number 

of websites promote the practice of fasting as 

either a single treatment or in combination with 

traditional treatment.  It is of course extremely 

important for oncologists to be aware of any 

dietary changes a patient may be implementing 

and to know what effects it may have on the 

patient.  While there has not been a wealth of 

studies directly examining the role of fasting in 

cancer treatment, the physiological changes 

that the body undergoes during fasting have 

been extensively studied, allowing potential 

connections to be drawn.  The physiological 

effects have been described as having three 

distinct phases: use of glycogen as the primary 

energy source, a switch to amino acid 

metabolism, and finally release of fatty acids 

from adipose tissue and subsequent 

metabolism (reviewed in [58]). 

 

Being in a state of fasting induces survival 

mechanisms in normal cells.  These include 

downregulation of the Ras and Tor pathways in 

yeast [59,60] and an increased d4E-BP in 

Drosophila [61].  Fasting is able to protect mice 

from oxidative stress induced by the 

chemotherapeutics etoposide [62] and 

doxorubicin [63].  Many of these effects are due 

to a dramatic decrease in the production of the 

pro-growth factor IGF-1 ([64]and [65] among 

many others), which may be caused by an 

increase in the IGF inhibitory protein, IGFBP-1 

[66]. 
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With only a prior discussion of these few effects 

of fasting (for a more in-depth review, see [67]), 

we can already see a number of ways in which 

fasting may be detrimental to cancer cells based 

on their fundamental differences from normal 

cells, the Hallmarks of Cancer [68].  First, due to 

the Warburg effect, in which cancer cells 

metabolize large amounts of glucose through 

glycolysis [69], the simple metabolic change of 

switching away from glucose as the primary 

energy source during fasting will deprive cancer 

cells of their required glucose intake while 

normal cells are able to utilize other pathways.  

As cancer cell growth is often driven by 

overactive pro-growth pathways, including IGF, 

Ras, and Tor, if a cancer cell has not become 

fully independent in its activation of these 

pathways, a fasting-induced reduction will slow 

their growth.  However, as it is a Hallmark, this 

independence has generally been achieved in 

advanced tumors, though this may also lead to 

a clinical benefit of fasting.  While normal cells 

slow their growth during fasting due to a 

downregulation of pro-growth factors and 

upregulation of anti-growth factors, cancer cells 

may continue their rapid proliferation due to 

their independence and their insensitivity to 

anti-growth factors, another Hallmark.  This has 

been shown to lead to better chemotherapeutic 

and radiotherapeutic outcomes via protection 

of normal cells, thereby reducing side effects 

and allowing more aggressive dosing in mice 

[70] and humans [71].  A more thorough clinical 

trial is currently underway at the University of 

Southern California studying the effect of 

fasting on the side effects and treatment 

outcome on gemcitabine and cisplatin 

treatment (clinical trial NCT00936364). 

 

It is important to stress that while there 

appears to be many ways in which fasting can 

benefit a cancer patient, much more work 

needs to be done.  It is imperative that an 

oncologist be involved in any changes in dietary 

intake.  Cancer treatment is notoriously rough 

on the body, and some patients may not be 

able to handle an additional insult as a result of 

fasting.  The possibilities are certainly intriguing, 

however. 

 

The ketogenic diet: Can bacon cure cancer? 

 

The ketogenic diet, one in which individuals eat 

primarily fats along with the minimum required 

amount of protein and very few carbohydrates, 

has many of the same effects on the body as 

does fasting.  The links are easy to make since 

both have very low consumption of 

carbohydrates, therefore lowering blood-

glucose levels.  The fundamental difference, 

however, is the addition of fats to the diet in 

the ketogenic regimen.  Fats are broken down 

in the body into fatty acids and ketone bodies, 

both of which can serve as cellular energy 

sources.  A high level of ketone bodies in the 

blood is termed ketosis.  These ketone bodies 

may play an additional role in cancer treatment, 

having a cytostatic effect on cells in vitro 

through blockage of glucose uptake [72] and 

providing an energy source for normal cells that 

cannot be utilized by cancer cells [73]. 

 

Studies in mice have shown very interesting 

results.  Initiation of a ketogenic diet prior to 

tumor implantation significantly reduces the 

rate of tumor growth [74], while initiation at 

the time of tumor implantation has no 

observable effect [74,75].  In more recent 

studies, higher levels of ketone bodies 

correlated with improved outcome, but only 

when the diet had also been restricted 

sufficiently to induce loss of body-weight 

[76,77], and the positive effects showed greater 
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correlation with decreased IGF-1 and blood-

glucose levels than with ketone bodies [76]. 

 

Clinical trials in humans examining the 

ketogenic diet have not occurred until very 

recently.  The first simply examined blood 

parameters and quality of life in advanced stage 

cancer patients, showing improvements in both 

[78].  A second treated two astrocytoma 

patients with a ketogenic diet, with one 

showing twelve-month progression-free 

survival [79].  Two clinical trials have shown 

anticancer activity of a ketogenic diet against 

glioblastoma [80,81] and a study administering 

a low carbohydrate diet has shown a correlation 

with decreased tumor growth and ketosis [82].  

Multiple other clinical trials are currently 

underway. 

 
Figure 3. Affects of fasting and a ketogenic 

diet.  Altered diet leads to lower blood glucose 

levels, a decrease in pro-growth factors 

including IGF-1, protection of normal cells 

toward genotoxic insults through growth 

inhibition, and an increase in circulating ketone 

bodies, which may have anti-cancer affects. 

 

So far, the benefits of the ketogenic diet have 

been difficult to distinguish between that of 

fasting and the majority of its effects may 

simply be due to an underlying fasting state.  

However, the anticancer properties of ketone 

bodies will need to be further studied.  While 

ketone bodies are also produced during the 

final stage of fasting when metabolism of body 

fat begins, the ketogenic diet is able to provide 

them in a more controlled manner and without 

the associated fatigue that occurs during 

fasting.  This diet may provide a useful 

alternative to those that cannot handle the 

physiological stress of a complete fast. 

 

Perspective 

 

Cancer is an extremely complicated condition.  

It is foolish to believe that it can be “cured” 

through simple means, however, it is equally as 

foolish to ignore evidence pointing to the fact 

that these tactics may be able to provide some 

anticancer benefits when used along other, 

more traditional methods.  While the 

promotion and use of complementary and 

alternative medicines has been occurring since 

long before the invention of the internet, 

computers now allow a much wider distribution 

of both medical knowledge and quackery.  With 

the immense stress that cancer patients and 

their families must endure, these treatment 

methods, legitimate or illegitimate, will be used 

by a portion of the population.  Therefore, it is 

imperative that we understand them, both 

those that work and those that don’t.  We owe 

it to our friends and families to do whatever 

possible to increase the chances of survival of 

every single person that is diagnosed with 

cancer and we, as scientists, must take that 

responsibility to heart. 
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